Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 65
1.
Biosens Bioelectron ; 261: 116493, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38901393

Although circulating tumor cells (CTCs) have demonstrated considerable importance in liquid biopsy, their detection is limited by low concentrations and complex sample components. Herein, we developed a homogeneous, simple, and high-sensitivity strategy targeting breast cancer cells. This method was based on a non-immunological stepwise centrifugation preprocessing approach to isolate CTCs from whole blood. Precise quantification is achieved through the specific binding of aptamers to the overexpressed mucin 1 (MUC1) and human epidermal growth factor receptor 2 (HER2) proteins of breast cancer cells. Subsequently, DNAzyme cleavage and parallel catalytic hairpin assembly (CHA) reactions on the cholesterol-stacking DNA machine were initiated, which opened the hairpin structures T-Hg2+-T and C-Ag+-C, enabling multiple amplifications. This leads to the fluorescence signal reduction from Hg2+-specific carbon dots (CDs) and CdTe quantum dots (QDs) by released ions. This strategy demonstrated a detection performance with a limit of detection (LOD) of 3 cells/mL and a linear range of 5-100 cells/mL. 42 clinical samples have been validated, confirming their consistency with clinical imaging, pathology findings and the folate receptor (FR)-PCR kit results, exhibiting desirable specificity of 100% and sensitivity of 80.6%. These results highlight the promising applicability of our method for diagnosing and monitoring breast cancer.

2.
J Mater Chem B ; 2024 Jun 17.
Article En | MEDLINE | ID: mdl-38884176

This study presented a nanoparticle-enhanced aptamer-recognizing homogeneous detection system combined with a portable instrument (NASPI) to quantify lipoarabinomannan (LAM). This system leveraged the high binding affinity of aptamers, the high sensitivity of nanoparticle cascade amplification, and the stabilization effect of dual stabilizers (fructose and histone), and used probe-Cu2+ to achieve LAM detection at concentrations ranging from 10 ag mL-1 to 100 fg mL-1, with a limit of detection of 3 ag mL-1 using a fluorometer. It can also be detected using an independently developed handheld fluorometer or the red-green-blue (RGB) camera of a smartphone, with a minimum detection concentration of 10 ag mL-1. We validated the clinical utility of the biosensor by testing the LAM in the urine of patients. Forty urine samples were tested, with positive LAM results in the urine of 18/20 tuberculosis (TB) cases and negative results in the urine of 6/10 latent tuberculosis infection cases and 10/10 non-TB cases. The assay results revealed a 100% specificity and a 90% sensitivity, with an area under the curve of 0.9. We believe that the NASPI biosensor can be a promising clinical tool with great potential to convert LAM into clinical indicators for TB patients.

3.
Anal Chem ; 2024 Jun 23.
Article En | MEDLINE | ID: mdl-38910291

Circulating tumor cells (CTCs) serve as important biomarkers in the liquid biopsy of hepatocellular carcinoma (HCC). Herein, a homogeneous dual fluorescence indicators aptasensing strategy is described for CTCs in HCC, with the core assistance of a steric hindrance-mediated enzymatic reaction. CTCs in the sample could specifically bind to a 5'-biotin-modified glypican-3 (GPC3) aptamer and remove the steric hindrance formed by the biotin-streptavidin system. This influences the efficiency of the terminal deoxynucleotidyl transferase enzymatic reaction. Then, methylene blue (MB) was introduced to react with the main product poly cytosine (polyC) chain, and trivalent cerium ion (Ce3+) was added to react with the byproduct pyrophosphate to form fluorescent pyrophosphate cerium coordination polymeric nanoparticles. Finally, the CTCs were quantified by dual fluorescence indicators analysis. Under optimized conditions, the linear range was 5 to 104 cells/mL, and the limits of detection reached 2 cells/mL. Then, 40 clinical samples (15 healthy and 25 HCC patients) were analyzed. The receiver operating characteristic curve analysis revealed an area under the curve of 0.96, a sensitivity of 92%, and a specificity of 100%. Therefore, this study established a sensitive and accurate CTCs sensing system for clinical HCC patients, promoting early tumor diagnosis.

4.
Research (Wash D C) ; 7: 0352, 2024.
Article En | MEDLINE | ID: mdl-38711475

In this study, we systematically investigated the interactions between Cu2+ and various biomolecules, including double-stranded DNA, Y-shaped DNA nanospheres, the double strand of the hybridization chain reaction (HCR), the network structure of cross-linked HCR (cHCR), and small molecules (PPi and His), using Cu2+ as an illustrative example. Our research demonstrated that the coordination between Cu2+ and these biomolecules not only is suitable for modulating luminescent material signals through complexation reactions with Cu2+ but also enhances signal intensities in materials based on chemical reactions by increasing spatial site resistance and local concentration. Building upon these findings, we harnessed the potential for signal amplification in self-assembled DNA nanospheres and the selective complexation modulation of calcein in conjunction with the aptamer targeting mucin 1 as a recognition probe. We applied this approach to the analysis of circulating tumor cells, with the lung cancer cell line A549 serving as a representative model. Our assay, utilizing both a fluorometer and a handheld detector, achieved impressive detection limits of ag/ml and single-cell levels for mucin 1 and A549 cells, and this approach was successfully validated using 46 clinical samples, yielding 100% specificity and 86.5% sensitivity. Consequently, our strategy has paved the way for more portable and precise disease diagnosis.

5.
Biosens Bioelectron ; 256: 116273, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38621341

Simple and reliable profiling of tumor-derived exosomes (TDEs) holds significant promise for the early detection of cancer. Nonetheless, this remains challenging owing to the substantial heterogeneity and low concentration of TDEs. Herein, we devised an accurate and highly sensitive electrochemical sensing strategy for TDEs via simultaneously targeting exosomal mucin 1 (MUC1) and programmed cell death ligand 1 (PD-L1). This approach employs high-affinity aptamers as specific recognition elements, utilizes rolling circle amplification and DNA nanospheres as effective bridges and signal amplifiers, and leverages methylene blue (MB) and doxorubicin (DOX) as robust signal reporters. The crux of this separation- and label-free method is the specific response of MB and DOX to G-quadruplex structures and DNA nanospheres, respectively. Quantifying TDEs using this strategy enabled precise discrimination of lung cancer patients (n = 25) from healthy donors (n = 12), showing 100% specificity (12/12), 92% sensitivity (23/25), and an overall accuracy of 94.6% (35/37), with an area under the receiver operating characteristic curve (AUC) of 0.97. Furthermore, the assay results strongly correlated with findings from computerized tomography and pathological analyses. Our approach could facilitate the early diagnosis of lung cancer through TDEs-based liquid biopsy.


Aptamers, Nucleotide , B7-H1 Antigen , Biosensing Techniques , Doxorubicin , Electrochemical Techniques , Exosomes , Lung Neoplasms , Humans , Biosensing Techniques/methods , Exosomes/chemistry , Electrochemical Techniques/methods , Lung Neoplasms/chemistry , Aptamers, Nucleotide/chemistry , Doxorubicin/chemistry , DNA/chemistry , Methylene Blue/chemistry , Nanospheres/chemistry , G-Quadruplexes
6.
Food Chem ; 451: 139453, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38677136

Establishing a rapid and accurate method for monitoring the freshness of aquatic products is of great importance. Hypoxanthine has been considered an essential indicator of aquatic products' freshness. Here, a novel smartphone colorimetric / inductively coupled plasma mass spectrometry (ICP-MS) / photothermal three-mode sensing strategy was established for monitoring hypoxanthine. Hypoxanthine can be catalyzed by xanthine oxidase to H2O2 and uric acid, which can simultaneously degrade MnO2 nanosheets (NSs) to Mn2+. After filter-assisted separation, the smartphone and ICP-MS were performed by monitoring the color of the membrane and the Mn2+ in the filtrate. Additionally, MnO2 NSs can facilitate the oxidation of dopamine to form polydopamine nanoparticles, which exhibit strong photothermal efficiency. The approach successfully monitored the deterioration of aquatic products under various storage conditions through portable thermometers and smartphones with low limits of detection (LODs), providing a potential application for in-situ evaluation of the freshness of aquatic products.


Biosensing Techniques , Hypoxanthine , Oxides , Hypoxanthine/analysis , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Oxides/chemistry , Animals , Manganese Compounds/chemistry , Food Storage , Food Contamination/analysis , Seafood/analysis , Limit of Detection , Colorimetry/methods , Colorimetry/instrumentation , Mass Spectrometry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Fishes , Xanthine Oxidase/chemistry , Xanthine Oxidase/metabolism , Smartphone , Indoles , Polymers
7.
ACS Appl Mater Interfaces ; 16(12): 14510-14519, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38488618

Interferon-γ (IFN-γ) release assays (IGRAs) are constrained by the limited diagnostic performance of a single indicator and the excessive Mycobacterium tuberculosis (Mtb) antigen stimulation time. This study presents a simultaneous, homogeneous, rapid, and ultrasensitive fluorescence quantification strategy for IFN-γ and IFN-γ-induced protein 10 (IP-10). This method relies on the high-affinity binding of aptamers to IFN-γ and IP-10, the enzyme-free catalytic hairpin assembly reaction, and the heightened sensitivity of CdTe quantum dots to Ag+ and hairpin structure C-Ag+-C and carbon dots to Hg2+ and hairpin structure T-Hg2+-T. Under optimized conditions, the selectivity of IFN-γ and IP-10 was excellent, with a linear range spanning from 1 to 100 ag/mL and low limits of detection of 0.3 and 0.5 ag/mL, respectively. Clinical practicality was confirmed through testing of 57 clinical samples. The dual-indicator combination detection showed 92.8% specificity and 93.1% sensitivity, with an area under the curve of 0.899, representing an improvement over the single-indicator approach. The Mtb antigen stimulation time was reduced to 8 h for 6/7 clinical samples. These findings underscore the potential of our approach to enhance the efficiency and performance of a tuberculosis (TB) clinical diagnosis.


Cadmium Compounds , Mercury , Mycobacterium tuberculosis , Nucleic Acids , Quantum Dots , Tuberculosis , Humans , Chemokine CXCL10 , Enzyme-Linked Immunosorbent Assay/methods , Tellurium , Tuberculosis/diagnosis , Interferon-gamma/metabolism , Antigens
8.
ACS Nano ; 18(6): 5017-5028, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38305181

Herein, we propose a paper-based laboratory via enzyme-free nucleic acid amplification and nanomaterial-assisted cation exchange reactions (CERs) assisted single-cell-level analysis (PLACS). This method allowed for the rapid detection of mucin 1 and trace circulating tumor cells (CTCs) in the peripheral blood of lung cancer patients. Initially, an independently developed method requiring one centrifuge, two reagents (lymphocyte separation solution and erythrocyte lysate), and a three-step, 45 min sample pretreatment was employed. The core of the detection approach consisted of two competitive selective identifications: copper sulfide nanoparticles (CuS NPs) to C-Ag+-C and Ag+, and dual quantum dots (QDs) to Cu2+ and CuS NPs. To facilitate multimodal point-of-care testing (POCT), we integrated solution visualization, test strip length reading, and a self-developed hand-held fluorometer readout. These methods were detectable down to ag/mL of mucin 1 concentration and the single-cell level. Forty-seven clinical samples were assayed by fluorometer, yielding 94% (30/32) sensitivity and 100% (15/15) specificity with an area under the curve (AUC) of 0.945. Nine and 15 samples were retested by a test strip and hand-held fluorometer, respectively, with an AUC of 0.95. All test results were consistent with the clinical imaging and the folate receptor (FR)-PCR kit findings, supporting its potential in early diagnosis and postoperative monitoring.


Lung Neoplasms , Neoplastic Cells, Circulating , Humans , Lung Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , Mucin-1/genetics , Liquid Biopsy , Nucleic Acid Amplification Techniques
9.
Biosens Bioelectron ; 249: 116030, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38241796

This study presents a straightforward efficient technique for extracting circulating tumor cells (CTCs) and a rapid one-step electrochemical method (45 min) for detecting lung cancer A549 cells based on the specific recognition of mucin 1 using aptamers and the modulation of Cu2+ electrochemical signals by biomolecules. The CTCs separation and enrichment process can be completed within 45 min using lymphocyte separation solution (LSS), erythrocyte lysis solution (ELS), and three centrifugations. Besides, the influence of various biomolecules on Cu2+ electrochemical signals is comprehensively discussed, with DNA nanospheres selected as the medium. Three single-stranded DNA sequences were hybridized to form Y-shaped DNA (Y-DNA), creating DNA nanospheres. Upon specific capture of mucin 1 by the aptamer, most DNA nanospheres could form complexes with Cu2+ (DNA nanosphere-Cu2+), significantly reducing the concentration of free Cu2+. Our approach yielded the limit of detection (LOD) of 2 ag/mL for mucin 1 and 1 cell/mL for A549 cells. 39 clinical blood samples were used for further validation, yielding results closely correlated with pathological, computed tomography (CT) scan findings and folate receptor-polymerase chain reaction (FR-PCR) kits. The receiver operating characteristic (ROC) curve displayed an area under the curve (AUC) value of 0.960, demonstrating 100% specificity and 93.1% sensitivity for the assay. Taken together, our findings indicate that this straightforward and efficient pretreatment and rapid, highly sensitive electrochemical assay holds great promise for liquid biopsy-based tumor detection using CTCs.


Aptamers, Nucleotide , Biosensing Techniques , Lung Neoplasms , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Lung Neoplasms/diagnosis , Mucin-1/genetics , Biosensing Techniques/methods , DNA/chemistry , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods
10.
J Oral Microbiol ; 16(1): 2299496, 2024.
Article En | MEDLINE | ID: mdl-38174123

Background: The biofilm formation in Dental Unit Waterlines (DUWLs) could become an important cause of infection during dental care, which could put immunocompromised individuals at risk of cross-infection. The aim of this study was to characterize the microbial communities of biofilms among DUWLs using high-throughput sequencing technology. Methods: Twenty-nine biofilm samples were obtained from 24 dental chair units at 5 hospitals and 2 dental clinics. The genomic DNA of the samples was extracted, then 16S rDNA and ITS2 gene were amplified and sequenced. Alpha-diversity and Beta-diversity were calculated with QIIME2 and the Kruskal - Wallis H-test was adopted for statistical analysis. Results: Microbial communities with a high diversity of bacteria (377 genera) and fungi (83 genera) were detected in the biofilm samples. The dominant phylum of bacteria was Proteobacteria (93.27%) and that of fungi was Basidiomycota (68.15%). Potential human pathogens were detected including 7 genera of bacteria (Pseudomonas, Stenotrophomonas, Hafnia-Obesumbacterium, Burkholderia-Caballeronia-Paraburkholderia, Ralstonia, Enterobacter, Klebsiella) and 6 genera of fungi (Malassezia, Candida, Alternaria, Cryptococcus, Rhodotorula, Rhinocladiella). Conclusions: This multicenter assessment revealed the infectious risk during dental care. It emphasized the importance of biofilm control due to biofilm accumulation and multiple kinds of opportunistic pathogens in DUWLs.

11.
Biosens Bioelectron ; 246: 115865, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38035517

A homogeneous rapid (45 min) one-pot electrochemical (EC) aptasensor was established to quantitatively detect circulating tumor cells (CTCs) in lung cancer patients using mucin 1 as a marker. The core of this study is that the three single-stranded DNA (Y1, Y2, and Y3) could be hybridized to form Y-shaped DNA (Y-DNA) and further self-assemble to form DNA nanosphere. The aptamer of mucin 1 could be complementary and paired with Y1, thus disrupting the conformation of the DNA nanosphere. When mucin 1 was present, the aptamer combined specifically with mucin 1, thus preserving the DNA nanosphere structure. Methylene blue (MB) acted as a signal reporter, which could be embedded between two base pairs in the DNA nanosphere to form a DNA nanosphere-MB complex, reducing free MB and resulting in a lower electrochemical signal. The results demonstrated that the linear ranges for mucin 1 and A549 cells were 1 ag/mL-1 fg/mL and 1-100 cells/mL, respectively, with minimum detectable concentrations were 1 ag/mL and 1 cell/mL, respectively. The quantitative analysis of CTCs in 44 clinical blood samples was performed, and the results were consistent with the computerized tomography (CT) images, pathological findings and folate receptor-polymerase chain reaction (FR-PCR) kits. The receiver operating characteristic (ROC) curve exhibited an area under the curve (AUC) value of 0.970. The assay revealed 100% specificity and 94.1% sensitivity. It is believed that this electrochemical aptasensor could provide a new approach to detect CTCs.


Aptamers, Nucleotide , Biosensing Techniques , Lung Neoplasms , Neoplastic Cells, Circulating , Humans , Mucin-1/analysis , Lung Neoplasms/diagnosis , Limit of Detection , Aptamers, Nucleotide/chemistry , Electrochemical Techniques/methods , Biosensing Techniques/methods , DNA/chemistry , Methylene Blue/chemistry
12.
Anal Chem ; 95(38): 14244-14252, 2023 09 26.
Article En | MEDLINE | ID: mdl-37705297

The effective enrichment and hypersensitivity analysis of circulating tumor cells (CTCs) in clinical whole blood samples are highly significant for clinical tumor liquid biopsy. In this study, we established an easy operation and affordable CTCs extraction technique while simultaneously performing the homogeneous inductively coupled plasma mass spectrometry (ICP-MS) determination of CTCs in lung cancer clinical samples based on selective recognition reactions and prereduction phenomena. Our strategy allowed for the pretreatment of whole blood samples in less than 45 min after step-by-step centrifugation, which only required lymphocyte separation solution and erythrocyte lysate. Furthermore, a three-stage signal amplification system consisting of catalytic hairpin assembly (CHA), selective recognition for C-Ag+-C structures and Ag+ of copper sulfide nanoparticles (CuS NPs), and prereduction of Hg2+ through ascorbic acid (AA) was constructed by using mucin 1 as the CTCs marker and the aptamer for identification probes. In optimal conditions, the detection limits of ICP-MS were as low as 0.3 ag/mL for mucin 1 and 0.25 cells/mL for A549 cells. This method analyzed CTCs in 58 clinical samples quantitatively, and the results were consistent with clinical CT images and pathological findings. The area under the curve (AUC) value of the receiver operating characteristic (ROC) curve was 0.957, which provided a specificity of 100% and a sensitivity of 91.5% for the assay. Therefore, the simplicity of the extraction method, the accessibility, and the high sensitivity of the assay method make the strategies attractive for clinical CTCs testing applications.


Lung Neoplasms , Mucin-1 , Humans , Lung Neoplasms/diagnosis , A549 Cells , Area Under Curve , Liquid Biopsy
13.
Sci Adv ; 9(39): eadi3053, 2023 09 29.
Article En | MEDLINE | ID: mdl-37756399

Genetic assimilation is the evolutionary process by which an environmentally induced phenotype becomes genetically encoded and constitutive. Genetic assimilation has been proposed as a concluding step in environmental adaptation, but its prevalence has not been systematically investigated. Analyzing transcriptomic data collected upon reciprocal transplant, we address this question in the experimental evolution, domestication, or natural evolution of seven diverse species. We find that genetic assimilation of environment-induced gene expression is the exception rather than the rule and that substantially more genes retain than lose their expression plasticity upon organismal adaptations to new environments. The probability of genetic assimilation of gene expression decreases with the expression level and number of transcription factors controlling the gene, suggesting that genetic assimilation results primarily from passive losses of gene regulations that are not mutationally robust. Hence, for gene expression, our findings argue against the purported generality or importance of genetic assimilation to environmental adaptation.


Gene Expression Profiling , Transcriptome , Domestication , Phenotype , Probability
14.
ACS Appl Mater Interfaces ; 15(32): 38285-38293, 2023 Aug 16.
Article En | MEDLINE | ID: mdl-37526600

Regularly measuring the level of CD4+ cells is necessary for monitoring progression and predicting prognosis in patients suffering from an infection with the human immunodeficiency virus (HIV). However, the current flow cytometry standard detection method is expensive and complicated. A parallel catalytic hairpin assembly (CHA)-assisted fluorescent aptasensor is reported for homogeneous CD4 count by targeting the CD4 protein expressed on the membrane of CD4+ cells. Detection was achieved using CdTe quantum dots (QDs) and methylene blue (MB) as signal reporters. CdTe QDs distinguished CHA-assisted release of Ag+ and C-Ag+-C and MB that has differentiated cytosine (C)-rich single-stranded DNA (ssDNA) and C-Ag+-C, generating changes in fluorescence intensity. With the assistance of the CHA strategy and luminescent nanomaterials, this method reached limits of detection of 0.03 fg/mL for the CD4 protein and 0.3 cells/mL for CD4+ cells with linear ranges of 0.1 to 100 fg/mL and 1 to 1000 cells/mL, respectively. The method was validated in 50 clinical whole blood samples consisting of 30 HIV-positive patients, 10 healthy volunteers, and 10 patients with cancer or other chronic infections. The findings from this method were in good agreement with the data from clinical flow cytometry. Due to its sensitivity, affordability, and ease of operation, the current method has demonstrated great potential for routine CD4 counts for the management of HIV, especially in communities and remote areas.


Biosensing Techniques , Cadmium Compounds , HIV Infections , Quantum Dots , Humans , Fluorescence , Tellurium , DNA, Single-Stranded , HIV , Biosensing Techniques/methods , Limit of Detection
15.
ACS Appl Mater Interfaces ; 15(23): 27687-27695, 2023 Jun 14.
Article En | MEDLINE | ID: mdl-37262009

Escherichia coli is the major pathogen that causes bloodstream infections (BSI). It is critical to develop nonculture identification methods which can meet the urgent need of clinical diagnosis and treatment. In this study, we reported a homogeneous fluorescence E. coli analysis system using ß-galactosidase (ß-Gal) as the biomarker and double-stranded DNA-templated copper nanoparticles (dsDNA-Cu NPs) as the signal output. The product of the enzymatic hydrolysis reaction, p-aminophenol (PAP), could reduce Cu2+ to Cu+, triggering the alkyne-azido cycloaddition reaction (CuAAC). Subsequently, the hybrid chain reaction (HCR) was initiated, producing the dsDNA template used to generate Cu NPs in situ. The system achieved a wide linear range for ß-Gal and E. coli 1-104 mU/L and 10-2-10 colony-forming unit (CFU)/mL, and a detection limit of 0.3 mU/L and 0.003 CFU/mL, respectively. 65 samples (45 blood and 20 urine) were collected to evaluate the clinical practicality. The results demonstrated remarkable area under the curve (AUC) values of 0.95 and 0.916 from uncultured urine and blood, respectively. It had 100% specificity and 83.3% sensitivity. The whole duration of the strategy was 3.5 h, which significantly reduced the turnaround time (TAT) and facilitated early BSI diagnosis to improve patients' prognosis. Our work had the potential to be an alternative to culture-based methods in clinics.


Biosensing Techniques , Sepsis , Humans , Escherichia coli/genetics , Click Chemistry , Copper/chemistry , DNA/chemistry
16.
Anal Chim Acta ; 1262: 341223, 2023 Jun 29.
Article En | MEDLINE | ID: mdl-37179054

It is well known that the coexisting metal ions could significantly influence the atomic spectroscopy (AS) analysis. In this work, a cation-modulated mercury ions (Hg2+) strategy via chemical vapor generation (CVG) was developed for oxalate assay due to the phenomenon that the Ag + can significantly reduce the Hg2+ signal. The regulation effect was studied in depth via experimental investigations. Since Ag + can be reduced to silver nanoparticles (Ag NPs) by reductant SnCl2, the decrease of the Hg2+ signal is attributed to the formation of a silver-mercury (Ag-Hg) amalgam. Due to the oxalate can react with Ag + to generate Ag2C2O4, which can reduce the generation of Ag-Hg amalgam, a portable and low-power point discharge chemical vapor generation atomic emission spectrometry (PD-CVG-AES) system was constructed to quantify the content of oxalate via monitoring the signal of Hg2+. Under optimal conditions, the limit of detection (LOD) was as low as 40 nM in the range of 0.1-10 µM for oxalate assay, while exhibiting good specificity. This method was applied to quantitative oxalate in 50 clinical urine samples of urinary stones patients. The levels of oxalate detected in clinical samples were consistent with clinical imaging results, which is promising for point-of-care testing in clinical diagnosis.


Mercury , Metal Nanoparticles , Urolithiasis , Humans , Gases , Ions , Mercury/analysis , Metal Nanoparticles/chemistry , Oxalates , Silver/chemistry , Spectrum Analysis , Urolithiasis/urine
17.
Anal Chem ; 95(19): 7676-7684, 2023 05 16.
Article En | MEDLINE | ID: mdl-37129316

Herein, we report a fluorescence strategy for the homogeneous and simultaneous analysis of urine miRNA-375 and miRNA-148a. The target miRNAs in urine bonded the devised dumbbell-shaped "C-Ag+-C" and "T-Hg2+-T" hairpin structures that could trigger cascade enzyme-free amplification. Then, the fluorescent CdTe quantum dots (QDs) and carbon dots (CDs) could selectively recognize Ag+ and Hg2+, to quantify the dual miRNAs concurrently. Under optimized conditions, the linear range was from 0.1 to 1000 fM and the limits of detection (LOD) for dual miRNAs reached 30 and 25 aM, respectively. The practicality was further evaluated with 45 clinical urine samples including prostate cancer (PC) and other patients, and the results were consistent with the clinical polymerase chain reaction (PCR) kit and ultrasonic and pathological findings. The receiver operating characteristic (ROC) curve analysis showed that the estimates of the area under the curve (AUC) were 0.739 for the serum prostate-specific antigen (PSA) and 0.941 for miRNA-375 and 0.946 for miRNA-148a. The sensitivity and specificity reached 75 and 100% for miRNA-375 and 71 and 94% for miRNA-148a, respectively, which was better than serum PSA. This strategy constructed a reliable system for dual miRNA detection in urine samples and proposed new insights into the rapid and noninvasive diagnosis of PC.


Cadmium Compounds , MicroRNAs , Prostatic Neoplasms , Quantum Dots , Male , Humans , MicroRNAs/analysis , Prostate-Specific Antigen , Cadmium Compounds/chemistry , Biomarkers, Tumor/genetics , Biomarkers, Tumor/urine , Quantum Dots/chemistry , Tellurium/chemistry , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/urine
18.
ACS Nano ; 17(7): 6998-7006, 2023 04 11.
Article En | MEDLINE | ID: mdl-37010068

Lipoarabinomannan (LAM) is a prospective noninvasive biomarker for tuberculosis (TB) diagnosis. Here, we report a visual immunoassay of high sensitivity for detecting LAM in urine samples toward TB diagnosis. This method uses a DNA-linked immunosorbent of LAM, followed by a transduction cascade into amplified visual signals using quantum dots (QDs) and calcein reaction with Cu2+ and copper nanoparticles (Cu NPs). The limit of detection (LOD) for LAM in the urine reaches 2.5 fg/mL and 25 fg/mL using a fluorometer and length readouts on strips, respectively, demonstrating an ultrahigh sensitivity. The clinical validation of the proposed assay was performed with 147 HIV-negative clinical urine specimens. The results show the sensitivity of test is 94.1% (16/17) for confirmed TB (culture-positive) and 85% (51/60) for unconfirmed TB (clinical diagnosis without positive culture results), respectively, when the test cutoff value is 40 fg/mL for TB. Its specificity is 89.2% (25/28) in non-TB and nontuberculous mycobacterial patients. The area under the curve (AUC) was 0.86 when controls were non-TB and LTBI patients, while the AUC was 0.92 when controls were only non-TB patients. This highly sensitive visual immunoassay of LAM has shown potential for noninvasive diagnosis of TB using urine samples.


HIV Infections , Mycobacterium tuberculosis , Tuberculosis , Humans , Prospective Studies , Sensitivity and Specificity , Tuberculosis/diagnosis , Lipopolysaccharides , Immunoassay , HIV Infections/diagnosis
19.
J Mater Chem B ; 11(11): 2530-2537, 2023 03 15.
Article En | MEDLINE | ID: mdl-36853266

Urolithiasis is a common disease with wide ranging effects, with oxalate stones being the most prevalent type. Existing clinical diagnostic methods rely on complex instruments and professionals, are difficult to distinguish between stone types, and have insufficient sensitivity. Moreover, high-sensitivity point-of-care testing (POCT) methods remain scarce. We constructed a rapid homogeneous dual fluorescence and binary visualization analysis system to diagnose oxalate urolithiasis because oxalate can efficiently reduce Cu2+ to Cu+, which can be selectively competitively recognized by both calcein and cadmium telluride quantum dots (CdTe QDs). Under optimized conditions, the system exhibited high sensitivity to oxalate ranging from 10 pM to 10 nM within 3 min. Following that, visualized test strips of calcein and QDs were generated by inkjet printing; oxalate concentrations as low as 10 nM can be easily identified by reading the quenching distance on the strip. We then analyzed 66 clinical urine samples: 11 healthy, 10 oxalate-negative, and 45 oxalate-positive samples. The fluorescence and visual mode results were highly consistent with clinical computed tomography (CT) images and clinical diagnostics. Therefore, our analysis strategy has the potential to use POCT for the assessment of oxalate urolithiasis.


Cadmium Compounds , Quantum Dots , Urolithiasis , Humans , Oxalates , Calcium Oxalate , Tellurium , Urolithiasis/diagnostic imaging
20.
Anal Chim Acta ; 1237: 340586, 2023 Jan 02.
Article En | MEDLINE | ID: mdl-36442948

Since oxalate plays an important role in the metabolic assessment of urolithiasis, there is need for convenient and efficient methods for oxalate detection. Herein, we report a three-signal fluorescence strategy for oxalate analysis based on the ability of oxalate to reduce Cu2+ to Cu+, and the ability of pyrophosphate-cerium coordination polymeric networks (PPi-Ce CPNs), cadmium telluride quantum dots (CdTe QDs), and N-Methyl Mesoporphyrin (NMM) to selectively detect Cu2+ and Cu+. The detection range was 100 nM to 1 mM, the turnaround time was 6 min, while the limits of detections for PPi-Ce CPNs, QDs and NMM as reporters were 25 nM, 10 nM and 40 nM, respectively. Visual detection of oxalate relied on color change in the solution, which could be observed using the naked eye. The fluorescent system was used for oxalate analysis in 44 urine samples (32 calcium oxalate stone patients, 12 controls without urolithiasis), and the results were consistent with clinical diagnosis and imaging data. Moreover, the visual system was used to analyze 8 urine samples (4 patients and 4 controls), and showed good consistency with clinical diagnosis and computed tomography imaging results. These findings suggest that the method has potential application for the metabolic assessment of urolithiasis.


Cadmium Compounds , Quantum Dots , Urolithiasis , Humans , Fluorescence , Tellurium , Costs and Cost Analysis , Urolithiasis/diagnostic imaging , Oxalates
...