Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inflammation ; 46(6): 2089-2101, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37436644

ABSTRACT

Cysteine-cysteine chemokine receptor type 5 (CCR5) is thought to play an important role in the trafficking of lymphoid cells but has recently also been associated with AMPK signaling pathways that are implicated in energy metabolism in skeletal muscle. We hypothesized that genetic deletions of CCR5 would alter mitochondria content and exercise performance in mice. CCR5-/- and wild-type mice with the same genetic background were subjected to endurance exercise and grip strength tests. The soleus muscle was stained with immunofluorescence for myosin heavy chain 7 (MYH7) and succinate dehydrogenase (SDH) analysis as well as the expression of genes associated with muscle atrophy and mitochondrial oxidative phosphorylation were measured using qPCR. Although there were no differences in the weight of the soleus muscle between the CCR5-/- group and the wild-type mice, the CCR5-/- mice showed the following muscular dysfunctions: (i) decreased MYH7 percentage and cross-section area, (ii) higher myostatin and atrogin-1 mRNA levels, (iii) dropped expression of mitochondrial DNA-encoded electron respiratory chain genes (cytochrome B, cytochrome c oxidase subunit III, and ATP synthase subunit 6) as well as mitochondrial generation genes (PPARγ and PGC-1α), and (iv) lower SDH activity and exercise performance when compared with wild-type mice. In addition, genes associated with mitochondrial biogenesis (PGC-1α, PPARγ, and MFN2) and mitochondrial complex (ND4 and Cytb) were upregulated when the skeletal muscle cell line C2C12 was exposed to cysteine-cysteine chemokine ligand 4 (a ligand of CCR5) in vitro. These findings suggested that attenuation of endurance exercise performance is related to the loss of mitochondrial content and lower SDH activity of soleus muscle in CCR5 knockout mice. The present study provides evidence indicating that the chemokine receptor CCR5 might modulate the skeletal muscle metabolic energy system during exercise.


Subject(s)
Cysteine , Transcription Factors , Mice , Animals , Transcription Factors/metabolism , Cysteine/metabolism , Receptors, Chemokine/metabolism , PPAR gamma/metabolism , Ligands , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Mice, Knockout , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
2.
Front Pharmacol ; 13: 950012, 2022.
Article in English | MEDLINE | ID: mdl-36120361

ABSTRACT

Background/Aim: Since 2019, the COVID-19 pandemic has been a devastating disease affecting global health to a great extent. Some countries have added on herbal medicines as a complementary treatment for combating COVID-19 due to the urgency of stopping the spread of this viral disease. However, whether these herbal medicines are effective is uncertain. This systematic review and meta-analysis aimed to evaluate the effects of herbal medicine combined therapy in the treatment of COVID-19. Methods: A literature search was performed following the PRISMA Statement and without language restrictions. Seven databases were searched from inception through December 2021. All selected studies were randomized clinical trials (RCTs). Comparing the effects of herbal medicine combined therapy with conventional western medicine, including improvement of clinical symptoms, chest CT images, viral conversion rate, C-reactive protein (CRP) and interleukin 6. Cochrane criteria were applied to examine the methodological quality of the enrolled trials; and meta-analysis software (RevMan 5.4.1) was used for data analysis. Results: In total, the data of 5,417 participants from 40 trials were included in this systematic review; and 28 trials were qualified for meta-analysis. The trials had medium-to-high quality based on GRADE system. Meta-analysis showed that combining herbal medicine vs conventional treatment in 1) coughing (1.43 95% CI:1.21, 1.71, p = 0.0001), 2) fever (1.09 95% CI:1.00, 1.19, p = 0.06), 3) fatigue (1.21 95% CI:1.10, 1.33, p = 0.0001); 4) CT images (1.26 95% CI:1.19, 1.34, P ≤ 0.00001), 5) viral conversion rates (1.22 95% CI:1.06, 1.40, p = 0.005) and 6) viral conversion times (-3.72 95% CI: -6.05, -1.40, p = 0.002), 7) IL6 change (1.97 95% CI: -0.72, 4.66, p = 0.15) and 8) CRP change (-7.92 95% CI: -11.30, -4.53, P ≤ 0.00001). Conclusion: Herbal medicine combined therapy significantly reduces COVID-19 clinical symptoms, improving CT images and viral conversion rates. Reported adverse events are mild. However, for certain biases in the included studies, and the need for further study on effective components of herbal medicine. Further large trials with better randomized design are warranted to definite a more definite role of herbal medicine.

3.
Am J Transl Res ; 14(2): 1234-1245, 2022.
Article in English | MEDLINE | ID: mdl-35273725

ABSTRACT

Di(2-ethylhexyl)phthalate (DEHP) is the most widely used phthalate to manufacture various plastic products. However, the potential effects of DEHP on erythropoiesis have not been investigated comprehensively. Here, we aimed to investigate whether DEHP modulated the function of hematopoietic stem and progenitor cells (HSPCs) to influence erythropoiesis, and to explore the associated mechanisms. In the present study, human cell lines with a capacity to differentiate into erythroid cells and murine bone marrow cells were treated with DEHP. DEHP not only impaired HSPC function, but also suppressed erythroid differentiation in a dose-dependent manner. In addition, DEHP removal restored HSPC activity. To explore how DEHP interfered with erythroid differentiation, we focused on energy metabolism and Klotho expression. DEHP suppressed erythroid differentiation via upregulating Klotho expression, while it did not via modulating cellular bioenergetics. Therefore, our results provided a novel insight into the pathophysiological link between phthalates and dysregulated erythroid differentiation.

4.
Front Nutr ; 8: 762363, 2021.
Article in English | MEDLINE | ID: mdl-34901113

ABSTRACT

Glucosamine (GlcN) is the most widely consumed dietary supplement and exhibits anti-inflammatory effects. However, the influence of GlcN on immune cell generation and function is largely unclear. In this study, GlcN was delivered into mice to examine its biological function in hematopoiesis. We found that GlcN promoted the production of immature myeloid cells, known as myeloid-derived suppressor cells (MDSCs), both in vivo and in vitro. Additionally, GlcN upregulated the expression of glucose transporter 1 in hematopoietic stem and progenitor cells (HSPCs), influenced HSPC functions, and downregulated key genes involved in myelopoiesis. Furthermore, GlcN increased the expression of arginase 1 and inducible nitric oxide synthase to produce high levels of reactive oxygen species, which was regulated by the STAT3 and ERK1/2 pathways, to increase the immunosuppressive ability of MDSCs. We revealed a novel role for GlcN in myelopoiesis and MDSC activity involving a potential link between GlcN and immune system, as well as the new therapeutic benefit.

5.
Am J Transl Res ; 12(3): 1016-1030, 2020.
Article in English | MEDLINE | ID: mdl-32269731

ABSTRACT

DNA methylation, catalyzed by DNA methyltransferases (DNMTs), is a heritable epigenetic mark, participating in numerous physiological processes. DNMT3A is of particular relevance to hematopoietic differentiation, because DNMT3A mutations are strongly related to hematopoietic malignancies. Additionally, DNMT3A deficiency has been reported to increase the hematopoietic stem cell pool by limiting their differentiation. Our previous study demonstrated that complete loss of DNMT3A resulted in anemia, while DNMT3A haploinsufficiency caused an elevated population of erythrocytes in the content of oncogenic KRAS. Since erythropoiesis is tightly regulated via the erythropoietin (EPO)-mediated RAS-RAF-MEK-ERK1/2 pathway, the question arises whether DNMT3A cooperates with RAS signaling to modulate erythropoiesis. Human leukemia cell lines were used, with differentiation capabilities towards megakaryocyte and erythroid lineages. Overexpression of DNMT3A was found to enhance erythrocytic differentiation of K562 cells, while DNMT3A knockdown suppressed differentiation. Furthermore, higher DNMT3A expression was detected in late-stage mouse erythroblasts along with the DNMT3A translocation to the nucleus. Further studies demonstrated that both ERK1/2-DNMT3A interaction and serine-255 phosphorylation in DNMT3A led to DNMT3A translocation into the nucleus, and modulated erythrocytic differentiation. Our results not only explore the critical role of DNMT3A in erythropoiesis, but also provide a new insight into ERK1/2-DNMT3A interaction in the hematopoietic system.

SELECTION OF CITATIONS
SEARCH DETAIL
...