Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 431
Filter
1.
J Invertebr Pathol ; 206: 108162, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944151

ABSTRACT

Decapod iridescent virus 1 (DIV1) stands as a significant pathogen affecting crustaceans, posing a grave threat to the shrimp industries in aquaculture dependent nations. Within the Iridoviridae family, the conserved envelope protein DIV1-168L plays a pivotal role in virion entry. Nonetheless, the host factors that interact with 168L remain unidentified. To address this gap, we established a cDNA library derived from Litopenaeus vannamei gill tissue and conducted yeast two-hybrid screening to identify host factors that interact with 168L. Additionally, we performed co-immunoprecipitation assays to verify the interaction between cuticle protein 8 (CP8) and 168L. Expression pattern analysis revealed the presence of CP8 transcripts in the gill and epidermis. Furthermore, immunohistochemistry results demonstrated the expression of CP8 in gill cells and its localization in the gill filament epithelium. Fluorescence analysis indicated that full-length CP8 colocalized with 168L in the cytoplasm of Sf9 cells. Removal of the signal peptide from the N-terminal of CP8 eliminated its concentration in the cytoplasm. Additionally, CP8 expression was significantly inhibited during DIV1 infection. Therefore, our research contributes to a better understanding of the entry mechanism of iridovirids. The GenBank accession number for the DIV1 sequence is MF197913.1.

2.
Eur J Med Chem ; 275: 116558, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38870833

ABSTRACT

The aberrant activation of FGFRs plays a critical role in various cancers, leading to the development of several FGFR inhibitors in clinic. However, the emergence of drug resistance, primarily due to gatekeeper mutations in FGFRs, has limited their clinical efficacy. To address the unmet medical need, a series of 5-amino-1H-pyrazole-4-carboxamide derivatives were designed and synthesized as novel pan-FGFR covalent inhibitors targeting both wild-type and the gatekeeper mutants. The representative compound 10h demonstrated nanomolar activities against FGFR1, FGFR2, FGFR3 and FGFR2 V564F gatekeeper mutant in biochemical assays (IC50 = 46, 41, 99, and 62 nM). Moreover, 10h also strongly suppressed the proliferation of NCI-H520 lung cancer cells, SNU-16 and KATO III gastric cancer cells with IC50 values of 19, 59, and 73 nM, respectively. Further X-ray co-crystal structure revealed that 10h irreversibly binds to FGFR1. The study provides a new promising point for anticancer drug development medicated by FGFRs.

3.
Inorg Chem ; 63(24): 11459-11469, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38842950

ABSTRACT

The performance of covalent-organic frameworks (COFs) for the photocatalytic extraction of uranium is greatly limited by the number of adsorption sites. Herein, inspired by electronegative redox reactions, we designed a nitrogen-oxygen rich pyrazine connected COF (TQY-COF) with multiple redox sites as a platform for extracting uranium via combining superaffinity and enhanced photoinduction. The preorganized bisnitrogen-bisoxygen donor configuration on TQY-COF is entirely matched with the typical geometric coordination of hexavalent uranyl ions, which demonstrates high affinity (tetra-coordination). In addition, the presence of the carbonyl group and pyrazine ring effectively stores and controls electron flow, which efficaciously facilitates the separation of e-/h+ and enhances photocatalytic performance. The experimental results show that TQY-COF removes up to 99.8% of uranyl ions from actual uranium mine wastewater under the light conditions without a sacrificial agent, and the separation coefficient reaches 1.73 × 106 mL g-1 in the presence of multiple metal ions, which realizes the precise separation in the complex environment. Importantly, DFT calculations further elucidate the coordination mechanism of uranium and demonstrate the necessity of the presence of N/O atoms in the photocatalytic adsorption of uranium.

4.
Cancer Lett ; 596: 217018, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38844062

ABSTRACT

Relapse and treatment resistance pose significant challenges in the management of pediatric B cell acute lymphoblastic leukemia (B-ALL) and acute myeloid leukemia (AML). The efficacy of immunotherapy in leukemia remains limited due to factors such as the immunosuppressive tumor microenvironment (TME) and lack of suitable immunotherapeutic targets. Thus, an in-depth characterization of the TME in pediatric leukemia is warranted to improve the efficacy of immunotherapy. Here, we used single-cell RNA sequencing (scRNA-seq) to characterize the TME of pediatric B-ALL and AML, focusing specifically on bone-marrow-derived T cells. Moreover, we investigated the transcriptome changes during the initiation, remission, and relapse stages of pediatric AML. Our findings revealed that specific functional expression programs correlated with fluctuations in various T cell subsets, which may be associated with AML progression and relapse. Furthermore, our analysis of cellular communication networks led to the identification of VISTA, CD244, and TIM3 as potential immunotherapeutic targets in pediatric AML. Finally, we detected elevated proportions of γδ T cells and associated functional genes in samples from pediatric patients diagnosed with B-ALL and AML, which could inform the development of novel therapeutic approaches, potentially focusing on γδ T cells.


Subject(s)
Leukemia, Myeloid, Acute , Single-Cell Analysis , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Tumor Microenvironment/genetics , Single-Cell Analysis/methods , Child , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Transcriptome , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/metabolism , Gene Expression Profiling/methods , Child, Preschool , Male , Female , B7 Antigens/genetics , Adolescent , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Gene Expression Regulation, Leukemic
5.
J Chromatogr A ; 1728: 465010, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38821033

ABSTRACT

Fufang Yinhua Jiedu granules (FYJG) is a Traditional Chinese Medicine (TCM) compound formulae preparation comprising ten herbal drugs, which has been widely used for the treatment of influenza with wind-heat type and upper respiratory tract infections. However, the phytochemical constituents of FYJG have rarely been reported, and its constituent composition still needs to be elucidated. The complexity of the natural ingredients of TCMs and the diversity of preparations are the major obstacles to fully characterizing their constituents. In this study, an innovative and intelligent analysis strategy was built to comprehensively characterize the constituents of FYJG and assign source attribution to all components. Firstly, a simple and highly efficient ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MSE) method was established to analyze the FYJG and ten single herbs. High-accuracy MS/MS data were acquired under two collision energies using high-definition MSE in the negative and positive modes. Secondly, a multistage intelligent data annotation strategy was developed and used to rapidly screen out and identify the compounds of FYJG, which was integrated with various online software and data processing platforms. The in-house chemical library of 2949 compounds was created and operated in the UNIFI software to enable automatic peak annotation of the MSE data. Then, the acquired MS data were processed by MS-DIAL, and a feature-based molecular networking (FBMN) was constructed on the Global Natural Product Social Molecular Networking (GNPS) to infer potential compositions of FYJG by rapidly classifying and visualizing. It was simultaneously using the MZmine software to recognize the source attribution of ingredients. On this basis, the unique chemical categories and characteristics of herbaceous plant species are utilized further to verify the accuracy of the source attribution of multi-components. This comprehensive analysis successfully identified or tentatively characterized 279 compounds in FYJG, including flavonoids, phenolic acids, coumarins, saponins, alkaloids, lignans, and phenylethanoids. Notably, twelve indole alkaloids and four organic acids from Isatidis Folium were characterized in this formula for the first time. This study demonstrates a potential superiority to identify compounds in complex TCM formulas using high-definition MSE and computer software-assisted structural analysis tools, which can obtain high-quality MS/MS spectra, effectively distinguish isomers, and improve the coverage of trace components. This study elucidates the various components and sources of FYJG and provides a theoretical basis for its further clinical development and application.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Medicine, Chinese Traditional
6.
Food Funct ; 15(11): 5703-5713, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38738978

ABSTRACT

Background: Numerous studies reported inconsistent association between breakfast skipping and all-cause, cardiovascular disease (CVD) and cancer mortality. Therefore, we conducted a systematic review and meta-analysis to elucidate these associations. Methods: PubMed, Embase, and Web of Science databases were searched up to July 2023 for prospective cohort studies that assessed the association between breakfast skipping and all-cause, CVD and cancer mortality in general adults. A random effect model was used to estimate the pooled hazard ratio (HR) and 95% confidence intervals (CIs), with subgroup analysis and sensitivity analysis performed. The Newcastle-Ottawa Scale (NOS) was used to assess the study and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool was used to assess the risk of bias. Results: The final analysis included 9 cohort studies including 242 095 participants, with 6 studies for all-cause mortality, 4 studies for CVD mortality, and 2 studies for cancer mortality. Compared to regular breakfast consumption, skipping breakfast was associated with a higher risk of all-cause (HR: 1.27, 95% CI, 1.07-1.51, I2 = 77%), CVD (HR 1.28, 95% CI 1.10-1.50, I2 = 0), and cancer (HR: 1.34, 95% CI: 1.11-1.61, I2 = 0%) mortality. Sensitivity analysis revealed inconsistent results in all-cause and CVD mortality. Subgroup analysis showed significant association in studies with larger participants, longer follow-up, adjustments for energy intake, and high-quality articles. GRADE showed very low evidence for all-cause mortality and low evidence for CVD and cancer mortality. Conclusion: The findings underscore the importance of regular breakfast habits for health and longevity. However, these results require careful interpretation due to geographic limitations, potential heterogeneity, and instability.


Subject(s)
Breakfast , Cardiovascular Diseases , Neoplasms , Humans , Neoplasms/mortality , Cardiovascular Diseases/mortality , Prospective Studies , Adult , Feeding Behavior , Male , Risk Factors , Female , Middle Aged , Intermittent Fasting
7.
ACS Appl Mater Interfaces ; 16(19): 24464-24472, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38710103

ABSTRACT

Potassium-sulfur (K-S) batteries are one of the promising high-energy-density candidates beyond current lithium-ion batteries. Nevertheless, in practice, the utilization of K-S batteries is largely hindered due to the dissolution and shuttle effect of the cathode redox intermediates and the scarcity of an effective anode protection layer in conventional electrolytes. Herein, electrolyte engineering is applied to formulate an ether-based localized high-concentration electrolyte (LHCE) for the first time in a K-S cell with the mitigated parasitic effect of polysulfide dissolution and shuttle and the tuned anode-electrolyte interface property. A nonsolvating and polysulfide-stable fluoroether is sieved as a cosolvent in such an LHCE, which possesses the ultralow polysulfides solubility due to less roaming solvents and thus alleviates the polysulfides shuttle effect. The anion-derived solid electrolyte interphase enriched in inorganic components is constructed due to the strengthened cation-anion interplay in the primary solvation sheath and highlighted with accelerated interfacial kinetics in a K-S cell. It is validated that the proposed LHCE unlocks the theoretical capacity of the K-S cell based on the conversion between S and K2S3. It is further revealed that the lifespan is limited to the anode corrosion with severe cosolvent degradation caused by limited solvating solvent compatibility with metallic K, and the inevitable byproduct accumulation at the S cathode. The K-S cell based on the designed LHCE could achieve a prolonged lifespan with a reversible capacity of 448 mA h/gs after 80 cycles with an elaborate cathode design. This work shines a light on the electrolyte design perspective for full utilization and an in-depth mechanistic understanding of high-energy-density K-S batteries.

9.
PLoS One ; 19(5): e0303324, 2024.
Article in English | MEDLINE | ID: mdl-38739623

ABSTRACT

BACKGROUND: Scoliosis is one of the most common surgical disorders of the pediatric spine. Refractive errors are commonly associated with vision impairment worldwide. However, it is currently unclear whether refractive error correlates directly with the development of scoliosis. METHODS: A cross-sectional study was performed in 2023, and a stratified cluster sampling technique was employed among school-aged students in Nantong City, China. Univariate and multivariate logistic regression analyses were used to investigate specific correlations between scoliosis and related parameters; various types of refractive errors were also included in the study. RESULTS: The prevalence of scoliosis among school-aged students was 2.2% in Nantong city. Multiple logistic regression analyses showed that myopia, hyperopia, astigmatism, and anisometropia were not correlated with the development of scoliosis (all, p≥0.05). Lower body mass index (BMI) [adjusted odds ratio (aOR) = 0.92; 95% confidence interval (CI): 0.88-0.95; p<0.001], living in rural areas (aOR = 1.40; 95% CI: 1.05-1.86; p = 0.020), and older age (aOR = 1.32; 95% CI: 1.25-1.38; p<0.001) had significantly higher risks of scoliosis. CONCLUSIONS: Refractive errors did not correlate with the development of scoliosis. However, BMI, living in rural areas and older age did correlate with the development of scoliosis.


Subject(s)
Refractive Errors , Scoliosis , Scoliosis/epidemiology , Scoliosis/complications , Humans , Male , Female , Cross-Sectional Studies , Refractive Errors/epidemiology , Child , Adolescent , China/epidemiology , Prevalence , Risk Factors , Body Mass Index , Logistic Models
10.
Environ Pollut ; 351: 124083, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38697244

ABSTRACT

Widespread use of tetracycline (TC) results in its persistent residue and bioaccumulation in aquatic environments, posing a high toxicity to non-target organisms. In this study, a bimetal-doped composite material Ag3PO4/MIL-101(Fe,Cu) has been designed for the treatment of TC in aqueous solutions. As the molar ratio of Fe/Cu in composite is 1:1, the obtained material AP/MFe1Cu1 is placed in an aqueous environment under visible light irradiation in the presence of 3 mM peroxydisulfate (PDS), which forms a photo-Fenton-like catalytic system that can completely degrade TC (10 mg/L) within 60 min. Further, the degradation rate constant (0.0668 min-1) is 5.66 and 7.34 times higher than that of AP/MFe and AP/MCu, respectively, demonstrating a significant advantage over single metal-doped catalysts. DFT calculations confirm the strong adsorption capacity and activation advantage of PDS on the composite surface. Therefore, the continuous photogenerated electrons (e-) accelerate the activation of PDS and the production of SO4•-, resulting in the stripping of abundant photogenerated h + for TC oxidation. Meanwhile, the internal circulation of FeⅢ/FeⅡ and CuⅡ/CuⅢ in composite also greatly enhances the photo-Fenton-like catalytic stability. According to the competitive dynamic experiments, SO4•- have the greatest contribution to TC degradation (58.93%), followed by 1O2 (23.80%). The degradation intermediates (products) identified by high-performance liquid chromatography-mass spectrometry (HPLC/MS) technique indicate the involvement of various processes in TC degradation, such as dehydroxylation, deamination, N-demethylation, and ring opening. Furthermore, as the reaction proceeds, the toxicity of the intermediates produced during TC degradation gradually decreases, which can ensure the safety of the aquatic ecosystem. Overall, this work reveals the synergy mechanism of PDS catalysis and photocatalysis, as well as provides technical support for removal of TC-contaminated wastewater.


Subject(s)
Copper , Iron , Metal-Organic Frameworks , Water Pollutants, Chemical , Catalysis , Copper/chemistry , Iron/chemistry , Metal-Organic Frameworks/chemistry , Water Pollutants, Chemical/chemistry , Silver Compounds/chemistry , Density Functional Theory , Electrons , Hydrogen Peroxide/chemistry , Phosphates
11.
Chin J Nat Med ; 22(5): 466-480, 2024 May.
Article in English | MEDLINE | ID: mdl-38796219

ABSTRACT

Sixteen new dammarane-type triterpenoid saponins (1-16) featuring diverse structural variations in the side chain at C-17, along with twenty-one known analogues (17-37), have been isolated from the rhizomes of Gynostemma longipes C. Y. Wu, a plant renowned for its medicinal and edible properties. The structural elucidation of these compounds was accomplished through comprehensive analyses of 1D and 2D NMR and HRMS spectroscopic data, supplemented by comparison with previously reported data. Subsequent assays on the isolates for their protective effects against hypoxia-induced damage in pheochromocytoma cells (PC12 cells) revealed that nine saponins exhibited significant anti-hypoxic activities. Further investigation into the anti-hypoxia mechanisms of the representative saponins demonstrated that compounds 22 and 36 markedly reduced the levels of hypoxia-induced apoptosis. Additionally, these compounds were found to decrease the release of lactate dehydrogenase (LDH) and malondialdehyde (MDA), while increasing the activity of superoxide dismutase (SOD), thereby indicating that the saponins could mitigate hypoxia-induced injuries by ameliorating apoptosis and oxidative stress. These findings offer substantial evidence for the future utilization and development of G. longipes, identifying dammarane-type triterpenoid saponins as its active anti-hypoxic constituents.


Subject(s)
Apoptosis , Dammaranes , Gynostemma , Saponins , Triterpenes , PC12 Cells , Triterpenes/pharmacology , Triterpenes/chemistry , Gynostemma/chemistry , Rats , Animals , Apoptosis/drug effects , Molecular Structure , Saponins/pharmacology , Saponins/chemistry , Saponins/isolation & purification , Oxidative Stress/drug effects , Malondialdehyde/metabolism , Superoxide Dismutase/metabolism , Rhizome/chemistry , Cell Hypoxia/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , L-Lactate Dehydrogenase/metabolism , Protective Agents/pharmacology , Protective Agents/chemistry
12.
Materials (Basel) ; 17(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38591591

ABSTRACT

To investigate the effect of the sintering temperature on the microstructure characteristics of porous NiTi alloys, two types of porous NiTi alloys with equal atomic ratios were fabricated via elemental powder sintering at 950 °C and 1000 °C. Afterwards, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were collectively applied to investigate the pore characteristics and microstructure of the fabricated porous NiTi alloy. The results show that when the sintering temperature increases from 950 °C to 1000 °C, the average pore size increases from 36.00 µm to 181.65 µm, owing to the integration of these newly formed small pores into these pre-existing large-sized pores. The measured density increases from 2.556 g/cm3 to 3.030 g/cm3, while the porosity decreases from 60.4% to 51.8%. This is due to the occurrence of shrinkage after the sufficient diffusion of atoms. Furthermore, the characterization results confirm that a change in the sintering temperature would not change the phase types within a porous NiTi alloy; namely, the matrix consists primarily of B2 NiTi, with a significant amount of Ni4Ti3 precipitates and a small amount of Ni3Ti precipitates and Ti2Ni precipitates. However, as the sintering temperature increases, the number of Ni4Ti3 precipitates decreases significantly. The formation of a Ni4Ti3 phase in the present study is closely related to the enrichment of Ni content in the matrix owing to the diffusion rate difference between Ni atoms and Ti atoms and the absence of a transient liquid phase (TLP) during the sintering process owing to the relatively low sintering temperature (lower than the eutectic temperature). Moreover, the increasing sintering temperature speeds up the atom diffusion, which contributes to a reduction in the enrichment of Ni as well as the number of formed Ni4Ti3 precipitates.

13.
Blood Sci ; 6(2): e00186, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38681968

ABSTRACT

Juvenile myelomonocytic leukemia (JMML) is a disorder characterized by the simultaneous presence of myeloproliferative and myelodysplastic features, primarily affecting infants and young children. Due to the heterogeneous genetic background among patients, the current clinical and laboratory prognostic features are insufficient for accurately predicting outcomes. Thus, there is a pressing need to identify novel prognostic indicators. Red cell distribution width (RDW) is a critical parameter reflecting the variability in erythrocyte size. Recent studies have emphasized that elevated RDW serves as a valuable predictive marker for unfavorable outcomes across various diseases. However, the prognostic role of RDW in JMML remains unclear. Patients with JMML from our single-center cohort between January 2008 and December 2019 were included. Overall, 77 patients were eligible. Multivariate Cox proportional hazard models showed that patients with red cell distribution width coefficient of variation (RDW-CV) >17.35% at diagnosis were susceptible to much worse overall survival rate (hazard ratio [HR] = 5.22, confidence interval [CI] = 1.50-18.21, P = .010). Besides, the combination of RDW elevation and protein phosphatase non-receptor type 11 (PTPN11) mutation was likely to predict a subgroup with the worst outcomes in our cohort. RDW is an independent prognostic variable in JMML subjects. RDW may be regarded as an inexpensive biomarker to predict the clinical outcome in patients with JMML.

14.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675456

ABSTRACT

Gardenia is both a food and medicine plant. It is widely used for cardiovascular protection, and its main bioactive ingredient is crocetin. This study aims to observe the therapeutic effects of crocetin on chronic heart failure in rats induced by various etiologies. It further compares the efficacy differences between preventative and treatment administration, varying dosages, and treatment durations, to provide improved guidance for medication in heart failure rats and determine which categories of chronic heart failure rats might benefit most from crocetin. Chronic heart failure models induced by abdominal aorta constriction, renal hypertension, and coronary artery ligation were constructed. By examining cardiac function, blood biochemistry, and histopathology, the study assessed the preventive and therapeutic effects of crocetin on load-induced and myocardial ischemia-induced heart failure. The results showed that in all three models, both treatment and preventative administration of crocetin significantly improved chronic heart failure in rats, especially in preventative administration. The results indicate crocetin may be beneficial for improving symptoms and functional capacity in rats with heart failure. Furthermore, long-term administration was more effective than short-term administration across all three rat models, with therapeutic onset observed over 6 weeks.

15.
J Pharm Biomed Anal ; 244: 116129, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38579408

ABSTRACT

Oligosaccharides constitute fundamental components in numerous traditional Chinese medicines (TCMs). Conventional chromatographic methods for natural product analysis are not suitable for oligosaccharides due to their large polarity and structural similarity. Herein, an ultra-high performance liquid chromatography with charged aerosol detector (UHPLC-CAD) method was developed for the profiling of oligosaccharides using 9 neutral (DP3-DP11) reference oligosaccharides. Various factors, including columns, mobile phase, elution conditions, flow rate, and column temperature were systematically examined. Optimal separation was achieved using an Amide column with gradient elution within 18 min, at 0.5 mL/min flow rate and 30°C column temperature. Moreover, an ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) method was also optimized to provide structural information. The developed method was applied to detect oligosaccharides in several TCMs, including Morindae Officinalis Radix (MOR), Ziziphi Spinosae Semen (ZSS), Menthae Haplocalycis Herba (MHH) and Chrysanthemi Indici Flos (CIF), revealing 9 and 16 oligosaccharides being uncovered from MHH and CIF respectively for the first time. This study presents a versatile UHPLC-CAD and UHPLC-Q-TOF/MS method with the potential for advancing oligosaccharides discovery and contributing to the quality analysis of TCMs.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Oligosaccharides , Chromatography, High Pressure Liquid/methods , Oligosaccharides/analysis , Oligosaccharides/chemistry , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Mass Spectrometry/methods
16.
J Colloid Interface Sci ; 665: 573-581, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38552574

ABSTRACT

Designing efficient and cost-effective electrocatalysts for overall water splitting remains a major challenge in hydrogen production. Herein, ammonia was introduced to pyrophosphate chelating solution assisted Ni particles preferential plating on porous Fe substrate to form coral-like Ni/NiFe-Pyro electrode. The pyrophosphate with multiple complex sites can couple with nickel and iron ions to form an integrated network structure, which also consists of metallic nickel due to the introduction of ammonia. The large network structure in Ni/NiFe-Pyro significantly enhances the synergistic effect between nickel and iron and then improves the electrocatalytic performance. As a result, the coral-like Ni/NiFe-Pyro@IF exhibits good electrocatalytic activity and stability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The electrolyzer assembled with Ni/NiFe-Pyro@IF as cathode and anode just needs a low water-splitting voltage of 1.54 V to obtain the current density of 10 mA cm-2. Meanwhile, the stability test of Ni/NiFe-Pyro@IF is performed at the current densities ranging from 10 to 400 mA cm-2 for 50 h without any significant decay, indicating robust catalytic stability for overall water splitting. This strategy for synthesizing metal/metal pyrophosphate composites may provide a new avenue for future studies of efficient bifunctional electrocatalysts.

17.
Eur J Med Chem ; 268: 116281, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38432058

ABSTRACT

Aberrant signaling via fibroblast growth factor 19 (FGF19)/fibroblast growth factor receptor 4 (FGFR4) has been identified as a driver of tumorigenesis and the development of many solid tumors, making FGFR4 is a promising target for anticancer therapy. Herein, we designed and synthesized a series of bis-acrylamide covalent FGFR4 inhibitors and evaluated their inhibitory activity against FGFRs, FGFR4 mutants, and their antitumor activity. CXF-007, verified by mass spectrometry and crystal structures to form covalent bonds with Cys552 of FGFR4 and Cys488 of FGFR1, exhibited stronger selectivity and potent inhibitory activity for FGFR4 and FGFR4 cysteine mutants. Moreover, CXF-007 exhibited significant antitumor activity in hepatocellular carcinoma cell lines and breast cancer cell lines through sustained inhibition of the FGFR4 signaling pathway. In summary, our study highlights a novel covalent FGFR4 inhibitor, CXF-007, which has the potential to overcome drug-induced FGFR4 mutations and might provide a new strategy for future anticancer drug discovery.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Receptor, Fibroblast Growth Factor, Type 4 , Antineoplastic Agents/chemistry , Signal Transduction , MCF-7 Cells , Phosphorylation , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor
18.
Se Pu ; 42(3): 234-244, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38503700

ABSTRACT

Ziziphi Spinosae Semen refers to the dried seed of Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou. The seed is composed of a reddish brown coat and a yellow kernel. A comparative study was conducted to investigate differences in the chemical composition and their relative contents between the seed coat and kernel of Ziziphi Spinosae Semen. First, the chemical compounds found in the seed coat and kernel were characterized and identified using ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). The analytical results tentatively identified 57 chemical compounds based on reference-compound comparison, literature retrieval, and chemical-database (e. g., MassBank) searches; these compounds included 14 triterpenes, 23 flavonoids, 7 alkaloids, 6 carboxylic acids, and 7 other types of compounds. The mass error of the identified compounds was within the mass deviation range of 5×10-6 (5 ppm). Next, two methods of multivariate statistical analysis, namely, principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA), were used to compare the differential compounds between the two seed parts. A total of 17 differential compounds were screened out via OPLS-DA based on a variable importance in projection (VIP) value of >5. The results revealed that betulinic acid, betulonic acid, alphitolic acid, and jujuboside Ⅰ mainly existed in the seed coat whereas the 13 other compounds, such as spinosin, jujuboside A, and 6‴-feruloylspinosin, mainly existed in the seed kernel. Therefore, these 17 differential compounds can be used to distinguish between the two seed parts. Finally, a semiquantitative method was established using UPLC and a charged aerosol detector (CAD) with inverse gradient compensation in the mobile phase. Six representative compounds with different types were selected to examine the CAD response consistency: magnoflorine (alkaloid), spinosin (flavone), 6‴-feruloylspinosin (flavone), jujuboside A (triterpenoid saponin), jujuboside B (triterpenoid saponin), and betulinic acid (triterpenoid acid). The results showed that the relative standard deviation (RSD) of the average response factors at different levels of these six compounds was 7.04% and that their response intensities were similar. Moreover, each compound in the fingerprint demonstrated good response consistency, and the peak areas obtained directly reflected the contents of each compound. Based on the semiquantitative fingerprints obtained, betulinic acid and oleic acid were considered the main components of the seed coat. The betulinic acid content in the seed coat was approximately 7 times higher than that in the seed kernel. Spinosin, jujuboside A, linoleic acid, betulinic acid, and oleic acid were the main components of the seed kernel. The spinosin content in the seed kernel was 18 times higher than that in the seed coat. In addition, the jujuboside A content in the seed kernel was 24 times higher than that in the seed coat. The proposed method can accurately determine the main components and compare the relative contents of these components in different seed parts. In summary, this study identified the differences in chemical components between the seed coat and kernel of Ziziphi Spinosae Semen and clarified the main components and their relative contents in these parts. The findings can not only provide a basis for the identification of chemical compounds and quality research on different parts of Ziziphi Spinosae Semen but also promote the development and utilization of this traditional Chinese medicine.


Subject(s)
Alkaloids , Drugs, Chinese Herbal , Flavones , Saponins , Triterpenes , Ziziphus , Drugs, Chinese Herbal/chemistry , Betulinic Acid , Saponins/chemistry , Oleic Acids , Chromatography, High Pressure Liquid , Ziziphus/chemistry , Seeds
19.
iScience ; 27(3): 109172, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38414864

ABSTRACT

Energy metabolism in the context of erythropoiesis and related diseases remains largely unexplored. Here, we developed a primary cell model by differentiating hematopoietic stem progenitor cells toward the erythroid lineage and suppressing the mitochondrial oxidative phosphorylation (OXPHOS) pathway. OXPHOS suppression led to differentiation failure of erythroid progenitors and defects in ribosome biogenesis. Ran GTPase-activating protein 1 (RanGAP1) was identified as a target of mitochondrial OXPHOS for ribosomal defects during erythropoiesis. Overexpression of RanGAP1 largely alleviated erythroid defects resulting from OXPHOS suppression. Coenzyme Q10, an activator of OXPHOS, largely rescued erythroid defects and increased RanGAP1 expression. Patients with Diamond-Blackfan anemia (DBA) exhibited OXPHOS suppression and a concomitant suppression of ribosome biogenesis. RNA-seq analysis implied that the substantial mutation (approximately 10%) in OXPHOS genes accounts for OXPHOS suppression in these patients. Conclusively, OXPHOS disruption and the associated disruptive mitochondrial energy metabolism are linked to the pathogenesis of DBA.

20.
Anal Chem ; 96(8): 3553-3560, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38362858

ABSTRACT

Lead halide perovskite nanocrystals with excellent photophysical properties are promising electrochemiluminescence (ECL) candidates, but their poor stability greatly restricts ECL applications. Herein, hydrogen-bonded cocrystal-encapsulated CsPbBr3 perovskite nanocrystals (PeNCs@NHS-M) were synthesized by using PeNCs as nuclei for inducing the crystallization of melamine (M) and N-hydroxysuccinimide (NHS). The as-synthesized composite exhibits multiplicative ECL efficiencies (up to 24-fold that of PeNCs) without exogenous coreactants and with excellent stability in the aqueous phase. The enhanced stability can be attributed to the well-designed heterostructure of the PeNCs@NHS-M composite, which benefits from both moiety passivation and protection of the peripheral cocrystal matrix. Moreover, the heterostructure with covalent linkage facilitates charge transfer between PeNCs and NHS-M cocrystals, realizing effective ECL emission. Meanwhile, the NHS and M components act as coreactants for PeNCs, shortening the electron-transport distance and resulting in a significant increase in the ECL signal. Furthermore, by taking advantage of the specific binding effect between NHS-M and uranyl (UO22+), an ECL system with both a low detection limit (1 nM) and high selectivity for monitoring UO22+ in mining wastewater is established. The presence of UO22+ disrupted the charge-transfer effect within PeNCs@NHS-M, weakening the ECL signals. This work provides an efficient design strategy for obtaining stable and efficient ECLs from perovskite nanocrystals, offering a new perspective for the discovery and application of perovskite-based ECL systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...