Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.598
Filter
1.
J Environ Sci (China) ; 148: 221-229, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095159

ABSTRACT

Polychlorinated naphthalenes (PCNs) are detrimental to human health and the environment. With the commercial production of PCNs banned, unintentional releases have emerged as a significant environmental source. However, relevant information is still scarce. In this study, provincial emissions for eight PCNs homologues from 37 sources in the Chinese mainland during the period of 1960-2019 were estimated based on a source-specific and time-varying emission factor database. The results showed that the total PCNs emissions in 2019 reached 757.0 kg with Hebei ranked at the top among all the provinces and iron & steel industry as the biggest source. Low-chlorinated PCNs comprised 90% of emissions by mass, while highly chlorinated PCNs dominated in terms of toxicity, highlighting divergent priorities for mitigating emissions and safeguarding human health. The emissions showed an overall upward trend from 1960 to 2019 driven by emission increase from iron & steel industry in terms of source, and from North China and East China in terms of geographic area. Per-capita emissions followed an inverted U-shaped environmental Kuznets curve while emission intensities decreased with increasing per-capita Gross Domestic Product (GDP) following a nearly linear pattern when log-transformed.


Subject(s)
Air Pollutants , Environmental Monitoring , Naphthalenes , China , Naphthalenes/analysis , Air Pollutants/analysis , Air Pollution/statistics & numerical data
2.
Comb Chem High Throughput Screen ; 27(14): 2125-2139, 2024.
Article in English | MEDLINE | ID: mdl-39099451

ABSTRACT

AIM: An analysis of bioinformatics and cell experiments was performed to verify the relationship between gasdermin D (GSDMD), an executive protein of pyroptosis, and Alzheimer's disease (AD). METHODS: The training set GSE33000 was utilized to identify differentially expressed genes (DEGs) in both the AD group and control group, as well as in the GSDMD protein high/low expression group. Subsequently, the weighted gene co-expression network analysis (WGCNA) and the least absolute shrinkage and selection operator (LASSO) regression analysis were conducted, followed by the selection of the key genes for the subsequent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The association between GSDMD and AD was assessed and confirmed in the training set GSE33000, as well as in the validation sets GSE5281 and GSE48350. Immunofluorescence (IF) was employed to detect the myelin basic protein (MBP), a distinctive protein found in the rat oligodendrocytes (OLN-93 cells). A range of concentrations (1-15 µmol/L) of ß-amyloid 1-42 (Aß1-42) were exposed to the cells, and the subsequent observations were made regarding cell morphology. Additionally, the assessments were conducted to evaluate the cell viability, the lactate dehydrogenase (LDH) release, the cell membrane permeability, and the GSDMD protein expression. RESULTS: A total of 7,492 DEGs were screened using GSE33000. Subsequently, WGCNA analysis identified 19 genes that exhibited the strongest correlation with clinical traits in AD. Additionally, LASSO regression analysis identified 13 key genes, including GSDMD, AFF1, and ATOH8. Furthermore, the investigation revealed that the key genes were associated with cellular inflammation based on GO and KEGG analyses. Moreover, the area under the curve (AUC) values for the key genes in the training and validation sets were determined to be 0.95 and 0.70, respectively. Significantly, GSDMD demonstrated elevated levels of expression in AD across both datasets. The positivity of MBP expression in cells exceeded 95%. As the concentration of Aß1-42 action gradually escalated, the detrimental effects on cells progressively intensified, resulting in a gradual decline in cell survival rate, accompanied by an increase in lactate dehydrogenase release, cell membrane permeability, and GSDMD protein expression. CONCLUSION: The association between GSDMD and AD has been observed, and it has been found that Aß1-42 can induce a significant upregulation of GSDMD in OLN-93 cells. This suggests that Aß1-42 has the potential to induce cellular pyroptosis and can serve as a valuable cellular pyroptosis model for the study of AD.


Subject(s)
Alzheimer Disease , Phosphate-Binding Proteins , Pyroptosis , Alzheimer Disease/metabolism , Pyroptosis/drug effects , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Humans , Animals , Rats , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Amyloid beta-Peptides/metabolism , Computational Biology , Peptide Fragments/metabolism , Gasdermins
3.
Adv Sci (Weinh) ; : e2405886, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101234

ABSTRACT

Microsatellite-stable colorectal cancer (MSS-CRC) exhibits resistance to programmed cell death protein-1 (PD-1) therapy. Improving the infiltration and tumor recognition of cytotoxic T-lymphocytes (CTLs) is a promising strategy, but it encounters huge challenges from drug delivery and mechanisms aspects. Here, a zeolitic imidazolate framework (ZIF) coated with apoptotic body membranes derived from MSS-CRC cells is engineered for the co-delivery of ginsenoside Rg1 (Rg1) and atractylenolide-I (Att) to MSS-CRC, named as Ab@Rg1/Att-ZIF. This system is selectively engulfed by Ly-6C+ monocytes during blood circulation and utilizes a "hitchhiking" mechanism to migrate toward the core of MSS-CRC. Ab@Rg1/Att-ZIF undergoes rapid disassembly in the tumor, released Rg1 promotes the processing and transportation of tumor antigens in dendritic cells (DCs), enhancing their maturation. Meanwhile, Att enhances the activity of the 26S proteasome complex in tumor cells, leading to increased expression of major histocompatibility complex class-I (MHC-I). These coordinated actions enhance the infiltration and recognition of CTLs in the center of MSS-CRC, significantly improving the tumor inhibition of PD-1 treatment from ≈5% to ≈69%. This innovative design, involving inflammation-guided precise drug co-delivery and a rational combination, achieves synergistic engineering of the tumor microenvironment, providing a novel strategy for successful PD-1 treatment of MSS-CRC.

4.
J Anim Sci ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096209

ABSTRACT

The issue of global warming, primarily fueled by anthropogenic greenhouse gas (GHG) emissions, necessitates effective strategies to address methane (CH4) emissions from both ruminants and nonruminants. Drawing inspiration from successful approaches employed in ruminants, this study evaluates the impact of supplementing the diets of Taiwan's native black-feathered chickens with alfalfa meal and sorghum distillery residues (SDRs) on CH4 emissions. Using a respiration chamber the results reveal a significant reduction in CH4 emissions when incorporating either 30% alfalfa meal or 30% SDRs into the chicken diet, demonstrating a 59% and 49% decrease, respectively, compared to the control group (P < 0.05). Considering that alfalfa meal contains saponins and SDRs contain tannins, the study delves into the mechanism through which these components mitigate CH4 production in chickens. Incorporating saponins or tannins show that groups supplemented with these components exhibit significantly lower CH4 emissions compared to the control group (P < 0.05), with a consistent linear decrease as the concentration of the feed additive increases. Further in vitro analysis of chicken cecal contents indicates a proportional reduction in CH4 production with increasing levels of added saponins or tannins (P < 0.05). These findings suggest that the CH4-reducing effects of alfalfa meal and SDRs can be attributed to their saponins and tannin content. However, caution is warranted as excessive alfalfa meal supplementation may adversely impact poultry growth. Consequently, sorghum distillery residue emerges as a more suitable feed ingredient for mitigating CH4 emissions in Taiwan's native black-feathered chickens compared to alfalfa. Additionally, substituting SDRs for conventional commercial chicken feed not only reduces CH4 emissions but also enhances the utilization of by-products.

5.
Int Immunopharmacol ; 140: 112795, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096873

ABSTRACT

Acne is a chronic inflammatory skin disease with wide-ranging effects, involving factors such as Propionibacterium acnes (P. acnes) infection and sebum hypersecretion. Current acne treatments are challenged by drug resistance. 5-aminolaevulinic acid (ALA) -based photodynamic therapy (PDT) has been widely used in the clinical treatment of acne, however, the mechanism of its action remains to be elucidated. In this study, by constructing a mice ears model of P. acnes infection, we found that ALA-PDT inhibited the proliferation of P. acnes in vivo and in vitro, significantly ameliorated ear swelling, and blocked the chronic inflammatory process. In vitro, ALA-PDT inhibited lipid secretion and regulated the expression of lipid synthesis and metabolism-related genes in SZ95 cells. Further, we found that ALA-PDT led to DNA damage and apoptosis in SZ95 cells by inducing mitochondrial stress and oxidative stress. Altogether, our study demonstrated the great advantages of ALA-PDT for the treatment of acne and revealed that the mechanism may be related to the blockade of chronic inflammation and the suppression of lipid secretion by ALA-PDT.

6.
Nanoscale Horiz ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087682

ABSTRACT

MXene-based architectures have paved the way in various fields, particularly in healthcare area, owing to their remarkable physiochemical and electromagnetic characteristics. Moreover, the modification of MXene structures and their combination with polymeric networks have gained considerable prominence to further develop their features. The combination of electrospun fibers with MXenes would be promising in this regard since electrospinning is a well-established technique that is now being directed toward commercial biomedical applications. The introduction of MXenes into electrospun fibrous frameworks has highlighted outcomes in various biomedical applications, including cancer therapy, controlled drug delivery, antimicrobial targets, sensors, and tissue engineering. Correspondingly, this review describes the employed strategies for the preparation of electrospun configurations in tandem with MXene nanostructures with remarkable characteristics. Next, the advantages of MXene-decorated electrospun fibers for use in biomedical applications are comprehensively discussed. According to the investigations, rich surface functional groups, hydrophilicity, large surface area, photothermal features, and antimicrobial and antibacterial activities of MXenes could synergize the performance of electrospun layers to engineer versatile biomedical targets. Moreover, the future of this path is clarified to combat the challenges related to the electrospun fibers decorated with MXene nanosheets.

7.
Environ Pollut ; 360: 124672, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39103034

ABSTRACT

Atrazine is a widely used herbicide in agricultural production. Previous studies have shown that atrazine affects hormone secretion and oocyte maturation in female reproduction. However, the specific mechanism by which atrazine affects ovarian function remains unclear. In this study, using a mouse gastric lavage model, we report that four weeks of atrazine exposure affects body growth, interferes with the estrous cycle, and increases the number of atretic follicles in mice. The expression levels of follicle development related factors StAR, BMP15, and AMH decreased. Metabolomic analysis revealed that atrazine activates an inflammatory response in ovarian tissue. Further studies confirmed that the expression levels of TNF-α, IL-6, and NF-κB increased in the ovaries of mice exposed to atrazine. Additionally, α-smooth muscle actin (α-SMA) accumulated in ovarian tissue, and transforming growth factor-ß (TGF-ß) signaling was activated, indicating the occurrence of tissue fibrosis. Moreover, mice exposed to atrazine produced fewer oocytes and exhibited reduced embryonic development. Furthermore, mice exposed to atrazine exhibited altered gut microbiota abundance and a disrupted colon barrier. Collectively, these findings suggest that atrazine exposure induces ovarian inflammation and fibrosis, disrupts ovarian homeostasis, and impairs follicle maturation, ultimately reducing oocyte quality.

8.
Int J Nanomedicine ; 19: 8029-8042, 2024.
Article in English | MEDLINE | ID: mdl-39130684

ABSTRACT

Purpose: Heterologous immunization using different vaccine platforms has been demonstrated as an efficient strategy to enhance antigen-specific immune responses. In this study, we performed a head-to-head comparison of both humoral and cellular immune response induced by different prime-boost immunization regimens of mRNA vaccine and adjuvanted protein subunit vaccine against varicella-zoster virus (VZV) in middle-aged mice, aiming to get a better understanding of the influence of vaccination schedule on immune response. Methods: VZV glycoprotein (gE) mRNA was synthesized and encapsulated into SM-102-based lipid nanoparticles (LNPs). VZV-primed middle-aged C57BL/6 mice were then subjected to homologous and heterologous prime-boost immunization strategies using VZV gE mRNA vaccine (RNA-gE) and protein subunit vaccine (PS-gE). The antigen-specific antibodies were evaluated using enzyme-linked immunosorbent assay (ELISA) analysis. Additionally, cell-mediated immunity (CMI) was detected using ELISPOT assay and flow cytometry. Besides, in vivo safety profiles were also evaluated and compared. Results: The mRNA-loaded lipid nanoparticles had a hydrodynamic diameter of approximately 130 nm and a polydispersity index of 0.156. Total IgG antibody levels exhibited no significant differences among different immunization strategies. However, mice received 2×RNA-gE or RNA-gE>PS-gE showed a lower IgG1/IgG2c ratio than those received 2×PS-gE and PS-gE> RNA-gE. The CMI response induced by 2×RNA-gE or RNA-gE>PS-gE was significantly stronger than that induced by 2×PS-gE and PS-gE> RNA-gE. The safety evaluation indicated that both mRNA vaccine and protein vaccine induced a transient body weight loss in mice. Furthermore, the protein vaccine produced a notable inflammatory response at the injection sites, while the mRNA vaccine showed no observable inflammation. Conclusion: The heterologous prime-boost strategy has demonstrated that an mRNA-primed immunization regimen can induce a better cell-mediated immune response than a protein subunit-primed regimen in middle-aged mice. These findings provide valuable insights into the design and optimization of VZV vaccines with the potentials to broaden varicella vaccination strategies in the future.


Subject(s)
Adjuvants, Immunologic , Immunity, Cellular , Mice, Inbred C57BL , Nanoparticles , Vaccines, Subunit , Animals , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Nanoparticles/chemistry , Adjuvants, Immunologic/administration & dosage , Female , mRNA Vaccines , Mice , Herpesvirus 3, Human/immunology , Antibodies, Viral/blood , Immunization, Secondary/methods , Viral Envelope Proteins/immunology , Viral Envelope Proteins/administration & dosage , Herpes Zoster Vaccine/immunology , Herpes Zoster Vaccine/administration & dosage , Liposomes
9.
Infect Drug Resist ; 17: 3403-3414, 2024.
Article in English | MEDLINE | ID: mdl-39131513

ABSTRACT

Objective: Tuberculosis preventive treatment (TPT) is an important strategy for tuberculosis (TB) control. Rheumatic diseases (RD) patients are at high risk for active TB development. More researches are needed in terms of patient compliance in clinical practice. This study aims to explore the potential difficulties and obstacles in latent tuberculosis infection (LTBI) screening and TPT in RD patients. Methods: Convenience sampling was used to recruit RD outpatients who had indications for LTBI screening and TPT. All participants were given questionnaires on knowledge and attitudes regarding screening and preventive treatment of LTBI. Results: Of the 200 RD patients, most people were aware that they were at increased risk of ATB due to their rheumatic disease and knew that TB was curable. The main association with willingness to have screening for LTBI was tertiary education (P = 0.013). The main association with willingness to take treatment for LTBI was a sense of personal risk and belief that the treatment would reduce risk of ATB (P < 0.001). More than half of the people surveyed could not accept taking 6 or more pills per day, while more than half of the patients could tolerate a treatment course of 9 months or longer. Most (65.4%) preferred their own rheumatologists to initiate treatment. Conclusion: Educating RD patients about their individual risks of TB and the side effects of treatment, and educating/empowering rheumatologists to discuss these aspects with their patients and to offer LTBI screening and treatment, may help improve patients' compliance with LTBI screening and TPT.

10.
Sci Total Environ ; : 175449, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134278

ABSTRACT

Enhanced anthropogenic activity strength has altered the watershed particulate transport and material cycle resulting in organic pollutant deposition changes in Dongting Lake associated with unclear ecological risk. In the present study, dual biomarkers i.e. n-alkanes and polycyclic aromatic hydrocarbon (PAHs) were applied in the 210Pb-dated sediment cores for traceability of centennial organic pollutants in the lake mouth area. The partial least squares path model and risk quotients method were used to explore the controlling pathways and ecological risk. The results show a range of sedimentary organic carbon (C), nitrogen (N), and phosphorus (P) was at 1.76-185.66, 0.97-89.80, and 0.01-0.97 g m-2 yr-1 with total reserves of 51.68, 18.44, and 0.27 t ha-1, respectively, over the past 179 years. The presence of PAHs rapidly increased by 2.47 fold from 535.60 ng g-1, while PAHs and carcinogenic PAHs (ΣCPAHs) burial fluxes increased by about 6 fold and 5 fold, respectively. Accompanied by anthropogenic activities and climate change, the exotic sources gradually becoming predominant. The n-alkane diagnostic ratios indicated a shift of organic matter (OM) from autotrophic bacteria, algae, and phytoplankton-derived sources to macrophyte and terrestrial plants. The exotic origins rose to approximately 73.61 %, while endogenous sources decreased to 26.39 %. The direct effects of anthropogenic activities and their indirect negative impacts on climate and sedimentary structure are the key ways for sediment material loading. The nutrient accumulation in sediments coincides with the lake's eutrophication history over the past decades. The ΣCPAHs accounted for about 89.37 ±â€¯17.14 % of the total TEQ, reflecting a strong ecological risk. The contribution of anthropogenic activities such as fuel usage, fertilizer application, hard pavement coverage, and OM loss from the ecosystem to the sources of organic pollutants and their component types may be a focus of attention in the middle reaches of the Yangtze River plain lake.

11.
Dent Mater J ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39135261

ABSTRACT

Material surface micromorphology can modulate cellular behavior and promote osteogenic differentiation through cytoskeletal rearrangement. Bone reconstruction requires precise regulation of gene expression in cells, a process governed by epigenetic mechanisms such as histone modifications, DNA methylation, and chromatin remodeling. We constructed osteon-mimetic concentric microgrooved titanium surfaces with different groove sizes and cultured bone marrow-derived mesenchymal stem cells (BMSCs) on the material surfaces to study how they regulate cell biological behavior and osteogenic differentiation through epigenetics. We found that the cells arranged in concentric circles along the concentric structure in the experimental group, and the concentric microgrooved surface did not inhibit cell proliferation. The results of a series of osteogenic differentiation experiments showed that the concentric microgrooves facilitated calcium deposition and promoted osteogenic differentiation of the BMSCs. Concentric microgrooved titanium surfaces that were 30 µm wide and 10 µm deep promoted osteogenic differentiation of BMSC by increasing WDR5 expression via H3K4 trimethylation upregulation.

12.
Front Med (Lausanne) ; 11: 1412048, 2024.
Article in English | MEDLINE | ID: mdl-39135720

ABSTRACT

Objective: To investigate the difference in the effectiveness and refraction of the foldable capsular buckle (FCB) in rhegmatogenous retinal detachment (RRD). Methods: Six patients with simple RRD were treated for FCB scleral buckling at Xiamen Eye Center of Xiamen University from October 2023 to February 2024. The parameters assessed included demographic data, clinical data such as preoperative ocular axis, corneal endothelial count, macular foveal thickness, operative time, preoperative and final follow-up intro ocular pressure (IOP), retinal attachment status, and postoperative complications. Refractive change before and after surgery, including sphere, cylinder degree, spherical equivalent, and absolute spherical equivalent difference were compared. Results: All six patients with sound retinal reattachment after FCB scleral buckling, including two men and four women, mean age 41.33 ± 12.40 years old, duration before surgery onset to 7.17 ± 7.16 days, FCB mean operation time 36.67 ± 13.07 min, Preoperative IOP mean 13.35 ± 2.64 mmHg and mean 21.12 ± 8.09 mmHg of final follow-up IOP; there was no significant difference between preoperative IOP and follow-up IOP (p = 0.050). The preoperative sphere range was -6.25 to +2.50 D, and the cylinder range was -2.50 to +1.00 D; the absolute spherical equivalent difference before and after was 1.60 ± 1.69 degrees. Conclusion: FCB can achieve retinal reattachment and restore visual function in cases of RRD. The shorter duration of external scleral buckle compression with FCB suggests that FCB scleral buckling holds greater promise in the clinical treatment of RRD caused by retinal tears.

13.
J Inflamm Res ; 17: 5253-5269, 2024.
Article in English | MEDLINE | ID: mdl-39135978

ABSTRACT

Purpose: This study investigated the correlation between the Naples prognostic score (NPS), clinicopathological traits, and the postoperative prognoses of patients with triple-negative breast cancer (TNBC). Based on NPS, a predictive nomogram was developed to estimate the long-term survival probabilities of patients with TNBC post-surgery. Patients and Methods: We retrospectively examined the clinical records of 223 women with TNBC treated at Ningbo Medical Center, Lihuili Hospital between January 1, 2016 and December 31, 2020. Blood tests and biochemical analyses were conducted before surgery. The prognostic nutritional index (PNI), controlling nutritional status (CONUT), neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and NPS were determined based on blood-related markers. A Kaplan-Meier survival analysis assessed the association between NPS, PNI, CONUT score, overall survival (OS), and breast cancer-specific survival (BCSS). Predictive accuracy was evaluated using the area under the receiver operating characteristic curve (AUC) and C index. The patients were randomly divided into the training and the validation group (6:4 ratio). A nomogram prediction model was developed and evaluated using the R Software for Statistical Computing (RMS) package. Results: NPS outperformed other scores in predicting inflammation outcomes. Patients with an elevated NPS had a poorer prognosis (P<0.001). Lymph node ratio (LNR), surgical method, postoperative chemotherapy, and NPS independently predicted OS, whereas M stage, LNR, and NPS independently predicted BCSS outcome. The OS and BCSS predicted by the nomogram model aligned well with the actual OS and BCSS. The decision curve analysis showed significant clinical utility for the nomogram model. Conclusion: In this study, NPS was an important prognostic indicator for patients with TNBC. The nomogram prognostic model based on NPS outperformed other prognostic scores for predicting patient prognosis. The model demonstrated a clear stratification ability for patient prognosis, which emphasized the potential benefits of early intervention for high-risk patients.


In this study, we aimed to understand how the Naples prognostic score (NPS) scoring system could predict the prognosis for patients with triple-negative breast cancer (TNBC). TNBC is a type of breast cancer that can be difficult to treat. Medical records of 223 women with TNBC were retrospectively analyzed. These women had their blood tested before surgery to check for certain markers related to nutrition and inflammation. NPS was used along with other scores to determine their accuracy in predicting survival. NPS was better at predicting outcomes than the other scores. The patients with higher NPS scores tended to have poorer outcomes. We also created a visual tool called a nomogram to help doctors predict patient outcomes based on the NPS scores. NPS can be a valuable tool for doctors treating patients with TNBC because it can help them predict how well a patient might do after surgery. This information could be used to tailor treatment plans for these patients. The nomogram provides a user-friendly way for doctors to use NPS in their practice. Overall, this study showed that NPS is a powerful tool for predicting outcomes for patients with TNBC, which could lead to better treatment decisions and improved outcomes for these patients.

14.
Oncol Lett ; 28(3): 445, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39099584

ABSTRACT

Microsatellite instability (MSI) status is a prognostic biomarker for immunotherapy in certain types of cancers, such as colorectal cancers (CRCs) and endometrial cancers (ECs). Tumors that are categorized as having high MSI (MSI-H) express high levels of neoantigens for immune recognition. The typical MSI test measures the length of short mononucleotide repeats (SMR) poly(A) 21-27; however, a limitation of this test is the difficulty in determining the shift size, particularly in endometrial cancer. To investigate an MSI detection assay with improved performance, the present study analyzed the use of poly(A) 40-44 mononucleotide repeats to detect the MSI status of 100 patients with either CRC (n=50) or EC (n=50). Capillary electrophoresis was used to evaluate five long mononucleotide repeat (LMR) markers, including poly(A) 40-A, 40-B, 40-C, 40-D and 44. The concordance rate of the LMR-MSI assay compared with an immunohistochemistry MSI detection assay was 96.0 and 95.1% for CRCs and ECs respectively, with the detection limit of the LMR-MSI assay demonstrated to be 2.5% MSI-H in HCT116 colorectal carcinoma cell lines. The LMR-MSI assay yielded a 95.1% concordance rate in ECs compared with that in the SMR-MSI test (87.8%). The LMR-MSI test identified a significantly higher mean shift size (13 bp) in MSI-H tumors compared with the SMR-MSI test (10 bp), in both EC and CRC tissue samples. Together, the present study suggested that the LMR-MSI test could potentially be a sensitive and practical technology for molecular laboratory testing, particularly in the use of immunotherapy for patients with CRCs and ECs.

15.
Cognition ; 251: 105903, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39126975

ABSTRACT

For convenience and experimental control, cognitive science has relied largely on images as stimuli rather than the real, tangible objects encountered in the real world. Recent evidence suggests that the cognitive processing of images may differ from real objects, especially in the processing of spatial locations and actions, thought to be mediated by the dorsal visual stream. Perceptual and semantic processing in the ventral visual stream, however, has been assumed to be largely unaffected by the realism of objects. Several studies have found that one key difference accounting for differences between real objects and images is actability; however, less research has investigated another potential difference - the three-dimensional nature of real objects as conveyed by cues like binocular disparity. To investigate the extent to which perception is affected by the realism of a stimulus, we compared viewpoint adaptation when stimuli (a face or a kettle) were 2D (flat images without binocular disparity) vs. 3D (i.e., real, tangible objects or stereoscopic images with binocular disparity). For both faces and kettles, adaptation to 3D stimuli induced stronger viewpoint aftereffects than adaptation to 2D images when the adapting orientation was rightward. A computational model suggested that the difference in aftereffects could be explained by broader viewpoint tuning for 3D compared to 2D stimuli. Overall, our finding narrowed the gap between understanding the neural processing of visual images and real-world objects by suggesting that compared to 2D images, real and simulated 3D objects evoke more broadly tuned neural representations, which may result in stronger viewpoint invariance.

16.
Bioresour Technol ; : 131214, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127361

ABSTRACT

Despite its prominence, the ability to engineer Cupriavidus necator H16 for inorganic carbon uptake and fixation is underexplored. We tested the roles of endogenous and heterologous genes on C. necator inorganic carbon metabolism. Deletion of ß-carbonic anhydrase can had the most deleterious effect on C. necator autotrophic growth. Replacement of this native uptake system with several classes of dissolved inorganic carbon (DIC) transporters from Cyanobacteria and chemolithoautotrophic bacteria recovered autotrophic growth and supported higher cell densities compared to wild-type (WT) C. necator in batch culture. Strains expressing Halothiobacillus neopolitanus DAB2 (hnDAB2) and diverse rubisco homologs grew in CO2 similarly to the wild-type strain. Our experiments suggest that the primary role of carbonic anhydrase during autotrophic growth is to support anaplerotic metabolism, and an array of DIC transporters can complement this function. This work demonstrates flexibility in HCO3- uptake and CO2 fixation in C. necator, providing new pathways for CO2-based biomanufacturing.

17.
Mult Scler Relat Disord ; 90: 105803, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39128164

ABSTRACT

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune-mediated primary inflammatory myelinopathy of the central nervous system that primarily affects the optic nerve and spinal cord. The aquaporin 4 antibody (AQP4-Ab) is a specific autoantibody marker for NMOSD. Most patients with NMOSD are seropositive for AQP4-Ab, thus aiding physicians in identifying ways to treat NMOSD. AQP4-Ab has been tested in many clinical and laboratory studies, demonstrating effectiveness in diagnosing NMOSD. Recently, novel assays have been developed for the rapid and accurate detection of AQP4-Ab, providing further guidance for the diagnosis and treatment of NMOSD. This article summarizes the importance of rapid and accurate diagnosis for treating NMOSD based on a review of the latest relevant literature. We discussed current challenges and methods for improvement to offer new ideas for exploring rapid and accurate AQP4-Ab detection methods, aiming for early diagnosis of NMOSD.

18.
Int Immunopharmacol ; 140: 112826, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39128416

ABSTRACT

Chronic airway inflammation induced by cigarette smoke (CS) plays an essential role in the pathogenesis of chronic obstructive pulmonary disease (COPD). MALAT1 is involved in a variety of inflammatory disorders. However, studies focusing on the interaction between MALAT1 and CS-induced airway inflammation remain unknown. The present study investigated the effects and mechanisms of MALAT1 in CS-induced airway inflammation in the pathogenesis of COPD. RT-qPCR was employed to determine the mRNA levels of MALAT1, miR-30a-5p and inflammatory cytokines. Protein concentrations of IL-1ß and IL-6 in cell culture supernatant and mouse bronchoalveolar lavage fluid (BALF) were assessed by ELISA assay kits. Dual-luciferase reporter assay was conducted to verify the interaction between MALAT1 and miR-30a-5p. The protein expression of JNK and p-JNK was determined by western blot (WB). MALAT1 was highly expressed in cigarette smoke extract (CSE)-treated human bronchial epithelial cells (HBECs) and COPD mice lung tissues. Knockdown of MALAT1 significantly alleviate CS-induced inflammatory response. MALAT1 directly interacted with miR-30a-5p and knockdown of miR-30a-5p significantly inhibit the protective effects of MALAT1 silencing after CS exposure. Additionally, our results showed that miR-30a-5p could regulate inflammation via modulating the activation of JNK signaling pathway. Moreover, our results demonstrated MALAT1 could activate JNK signaling pathway by sponging miR-30a-5p. Our results demonstrated MALAT1 promotes CS-induced airway inflammation by inhibiting the activation of JNK signaling pathway via sponging miR-30a-5p.

19.
J Biol Chem ; : 107672, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39128723

ABSTRACT

The ubiquitin-proteasome system (UPS), which involves E3 ligases and deubiquitinases (DUBs), is critical for protein homeostasis. The epigenetic reader ZMYND8 (zinc finger MYND-type containing 8) has emerged as an oncoprotein, and its protein levels are elevated in various types of cancer, including breast cancer. However, the mechanism by which ZMYND8 protein levels are increased in cancer remains elusive. Although ZMYND8 has been reported to be regulated by the E3 ligase FBXW7, it is still unknown whether ZMYND8 could be modulated by DUBs. Here, we identified USP7 (ubiquitin carboxyl-terminal hydrolase 7) as a bona fide DUB for ZMYND8. Mechanically, USP7 directly binds to the PBP (PHD-BRD-PWWP) domain of ZMYND8 via its TRAF (tumor necrosis factor receptor-associated factor) domain and UBL (ubiquitin-like) domain and removes F-box and WD repeat domain containing 7 (FBXW7)-catalyzed poly-ubiquitin chains on lysine residue 1034 (K1034) within ZMYND8, thereby stabilizing ZMYND8 and stimulating the transcription of ZMYND8 target genes ZEB1 (zinc finger E-box binding homeobox 1) and VEGFA (Vascular Endothelial Growth Factor A). Consequently, USP7 enhances the capacity of breast cancer cells for migration and invasion through antagonizing FBXW7-mediated ZMYND8 degradation. Importantly, the protein levels of USP7 positively correlates with those of ZMYND8 in breast cancer tissues. These findings delineate an important layer of migration and invasion regulation by the USP7-ZMYND8 axis in breast cancer cells.

20.
Nat Commun ; 15(1): 6741, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39112466

ABSTRACT

The development of highly efficient and durable alkaline hydrogen evolution reaction (HER) catalysts is crucial for achieving high-performance practical anion exchange membrane water electrolyzer (AEMWE) at ampere-level current density. Herein, we report a design concept by employing Ga single atoms as an electronic bridge to stabilize the Ru clusters for boosting alkaline HER performance in practical AEMWE. Experimental and theoretical results collectively reveal that the bridged Ga sites trigger strong metal-support interaction for the homogeneous distribution of Ru clusters with high density, as well as optimize the Ru-H bond strength due to the electron transfer between Ru and Ga for enhanced intrinsic HER activity. Moreover, the oxophilic Ga sites near the Ru clusters tend to adsorb the hydroxyl species and accelerate the water dissociation for sufficient proton supplement in an alkaline medium. The Ru-GaSA/N-C catalyst exhibits a low overpotential of 4 ± 1 mV (10 mA cm-2) and high mass activity of 9.3 ± 0.5 A mg-1Ru at -0.05 V vs RHE. In particular, the Ru-GaSA/N-C-based AEMWE in 1 M KOH delivers a voltage of only 1.74 V to reach an industrial current density of 1 A cm-2, and can steadily operate at 1 A cm-2 for more than 170 h.

SELECTION OF CITATIONS
SEARCH DETAIL