Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(34): 14146-14154, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37591823

ABSTRACT

Chirality plays an important role in biological processes, and enantiomers often possess similar physical properties and different physiological functions. Thus, chiral detection of enantiomers has become a hot topic in recent years, and methods to enhance chiral molecular recognition are in urgent demand. In this work, a polarization detection method was used for different chiral drugs based on a specially designed metasurface composed of asymmetric double-opened rings and the surface enhancement effect of gold nanoparticles (GNPs). The experiment results show that the frequency shifts caused by the nearfield interaction of the metasurface and biomolecules have been significantly improved by GNPs, and both the limit of detection and detection precision of the metasurface can reach the 10-5 g ml-1 level. Moreover, the polarization sensing characterized by right circular polarization (RCP), the polarization elliptical angle (PEA), and the polarization rotation angle (PRA) shows that the enantiomers of three drugs can be distinguished, especially using the PEA spectrum; the maximum difference between enantiomers is over 30° with a precision of 6.6 × 10-7 g mL-1. Our THz polarization sensing and the GNP enhancement method inspire an efficient strategy for the highly sensitive detection of enantiomers.


Subject(s)
Gold , Metal Nanoparticles
2.
Opt Express ; 28(12): 17253-17265, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32679937

ABSTRACT

Terahertz (THz) birefringence anisotropy of the polymer-dispersed liquid crystal (PDLC) doped with gold nanoparticles (Au NPs) is investigated by using terahertz time domain polarization spectroscopy. Controlled by the electric field, the change rate of refractive index for PDLC doped with Au NPs is 0.91% V-1 as the voltage increases, smaller than the pure PDLC, which indicates that the response of the PDLC doped with Au NPs to electric field is more uniform than that of pure PDLC. Therefore, the PDLC doped with Au NPs is more suitable for tunable phase shifters. Furthermore, we found that under the high-frequency alternating electric field, the anisotropic polarization effect of PDLC will disappear to this electric field, namely polarization relaxation phenomenon. However, the results show that the PDLC doped with Au NPs can respond to an electric field with higher alternating frequencies, and the relaxation frequency of PDLC with an Au NPs concentration of 0.2 wt% was improved over two times compared with the pure PDLC and four times higher than that of the precursor mixture without ultraviolet radiation. This work has the significance for the potential applications of tunable THz liquid crystal phase and polarization devices, providing a more uniform and faster relaxation response to the operating electric field.

3.
Opt Lett ; 44(10): 2450-2453, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31090704

ABSTRACT

We experimentally demonstrate an active terahertz (THz) resonance switch induced by the polarization conversion in a compound metasurface, which is a LC layer sandwiched by a metallic wire grating and resonance metamaterial (LCGM). Here, the liquid crystal (LC) plays the role of polarization conversion, which can induce the TE resonance. Moreover, there exists a localized resonance between metallic grating and metamaterial layers, and then the excited resonance will be greatly enhanced. The results show that the high extinction ratio of the resonance switch exceeds 30 dB at 0.82 THz. This work will bring new ideas for the research in developing THz phase, polarization, and switch devices with LC and metasurface.

4.
Opt Express ; 27(1): 202-211, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30645368

ABSTRACT

High-index dielectric metasurfaces are rarely reported around 0.1-0.3 THz, as an extremely large etching depth is needed according to the millimeter-scale wavelength. In this work, we propose an easy solution to sub-THz wideband polarization control by utilizing 3D-printed low-index (n~1.5) metagratings. The metagrating with subwavelength lattice is shown as a very efficient half-wave plate (net polarization conversion of 87%) at 0.14 THz but showing noisy spectrum. The design with superwavelength lattice offers a smooth and wide bandwidth for linear polarization rotation. Study of the mechanism shows that the lattice size slightly above wavelength is a better choice for the low-index metadevice as it maintains high efficiency in the zero diffraction order and wide bandwidth due to the small mode dispersion. Such designs offer a feasible solution especially suitable for sub-THz polarization and phase control, complementary to the existing high-index dielectric and metallic metasurfaces.

5.
Opt Express ; 26(2): 663-673, 2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29401948

ABSTRACT

In this work, the optically anisotropic property of dual-frequency liquid crystals (DFLC) in terahertz (THz) regime has been experimentally investigated, which indicates that the refractive index and birefringence of DFLC can be continuously modulated by both the alternating frequency and intensity of the alternating electric field. This tunability originates from the rotation of DFLC molecules induced by alternating electric fields. The results show that by modulating the alternating frequency from 1 kHz to 100 kHz under 30 kV/m electric field, the 600 µm thickness DFLC cell can play as a tunable quarter-wave plate above 0.68 THz, or a half-wave plate above 1.33 THz. Besides, it can be viewed as a tunable THz phase shifter from 0 to π. Therefore, due to its novel tuning mechanism, DFLC will be of great significance in dynamic manipulating on THz phase and polarization.

6.
Opt Express ; 18(16): 17114-23, 2010 Aug 02.
Article in English | MEDLINE | ID: mdl-20721100

ABSTRACT

In this paper, the noise performances of 1.5 microm correlated photon pair generation based on spontaneous four wave-mixing in three types of fibers, i.e., dispersion shifted fiber, traditional highly nonlinear fiber and highly nonlinear microstructure fiber are investigated experimentally. Result of the comparison shows that highly nonlinear microstructure fiber has the lowest Raman noise photon generation rate among the three types of fibers while correlated photon pair generation rate is the same. Theoretical analysis indicates that the noise performance is determined by the nonlinear index and Raman response of the material in fiber core. The Raman response rises with increasing doping level, while, for the nonlinear index, the impact of doping level is weak. As a result, highly nonlinear microstructure fiber with pure silica core has the best noise performance and great potential in practical sources of correlated photon pairs and heralded single photons.


Subject(s)
Computer Simulation , Fiber Optic Technology/instrumentation , Optical Fibers , Photons , Scattering, Radiation , Spectrum Analysis, Raman/methods , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL
...