Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 12: 1390337, 2024.
Article in English | MEDLINE | ID: mdl-38707496

ABSTRACT

Objective: This study aims to develop and evaluate the biocompatibility and osteogenic potential of a novel injectable strontium-doped hydroxyapatite bone-repair material. Methods: The properties of strontium-doped hydroxyapatite/chitosan (Sr-HA/CS), hydroxyapatite/chitosan (HA/CS) and calcium phosphate/chitosan (CAP/CS) were assessed following their preparation via physical cross-linking and a one-step simplified method. Petri dishes containing Escherichia coli and Staphylococcus epidermidis were inoculated with the material for in vitro investigations. The material was also co-cultured with stem cells derived from human exfoliated deciduous teeth (SHEDs), to assess the morphology and proliferation capability of the SHEDs, Calcein-AM staining and the Cell Counting Kit-8 assay were employed. Osteogenic differentiation of SHEDs was determined using alkaline phosphatase (ALP) staining and Alizarin Red staining. For in vivo studies, Sr-HA/CS was implanted into the muscle pouch of mice and in a rat model of ovariectomy-induced femoral defects. Hematoxylin-eosin (HE) staining was performed to determine the extent of bone formation and defect healing. The formation of new bone was determined using Masson's trichrome staining. The osteogenic mechanism of the material was investigated using Tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemical studies. Results: X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) showed that strontium was successfully doped into HA. The Sr-HA/CS material can be uniformly squeezed using a syringe with a 13% swelling rate. Sr-HA/CS had a significant antibacterial effect against both E. coli and S. epidermidis (p < 0.05), with a stronger effect observed against E. coli. The Sr-HA/CS significantly improved cell proliferation and cell viability in vitro studies (p < 0.05). Compared to CAP/CS and CS, Sr-HA/CS generated a substantially greater new bone area during osteoinduction experiments (p < 0.05, p < 0.001). The Sr-HA/CS material demonstrated a significantly higher rate of bone repair in the bone defeat studies compared to the CAP/CS and CS materials (p < 0.01). The OCN-positive area and TRAP-positive cells in Sr-HA/CS were greater than those in control groups (p < 0.05). Conclusion: A novel injectable strontium-doped HA bone-repair material with good antibacterial properties, biocompatibility, and osteoinductivity was successfully prepared.

2.
Int J Dev Biol ; 67(4): 137-146, 2023.
Article in English | MEDLINE | ID: mdl-37975329

ABSTRACT

For the past 50 years, hydroxyapatite (HA) has been widely used in bone defect repair because it is the main inorganic component of the mineral phase of a human bone. Extensive preclinical and clinical studies have shown that strontium (Sr) can safely and effectively help prevent and treat bone diseases, including osteoporosis. These findings have resulted in the concept of integrating Sr and HA for bone disease management. The doped Sr can improve the physicochemical properties of HA and enhance its angiogenic and bone regeneration ability. Nevertheless, no study has reviewed the design strategy of Sr-doped HA (Sr-HA) to understand its biological roles. Therefore, in this article, we review recent developments in Sr-HA preparation and its effect on osteogenesis and angiogenesis in vitro and in vivo along with key suggestions for future research and development.


Subject(s)
Angiogenesis , Osteogenesis , Humans , Hydroxyapatites/chemistry , Hydroxyapatites/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Strontium/pharmacology , Strontium/chemistry
3.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(4): 805-811, 2023 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-37666773

ABSTRACT

Bioactive glass (BG) has been widely used in the preparation of artificial bone scaffolds due to its excellent biological properties and non-cytotoxicity, which can promote bone and soft tissue regeneration. However, due to the brittleness, poor mechanical strength, easy agglomeration and uncontrollable structure of glass material, its application in various fields is limited. In this regard, most current researches mainly focus on mixing BG with organic or inorganic materials by freeze-drying method, sol-gel method, etc., to improve its mechanical properties and brittleness, so as to increase its clinical application and expand its application field. This review introduces the combination of BG with natural organic materials, metallic materials and non-metallic materials, and demonstrates the latest technology and future prospects of BG composite materials through the development of scaffolds, injectable fillers, membranes, hydrogels and coatings. The previous studies show that the addition of BG improves the mechanical properties, biological activity and regeneration potential of the composites, and broadens the application of BG in the field of bone tissue engineering. By reviewing the recent BG researches on bone regeneration, the research potential of new materials is demonstrated, in order to provide a reference for future related research.


Subject(s)
Bone Regeneration , Bone and Bones , Freeze Drying , Glass , Hydrogels
4.
J Tissue Eng ; 14: 20417314231187113, 2023.
Article in English | MEDLINE | ID: mdl-37464999

ABSTRACT

Three-dimensional (3D) bioprinting is a promising and rapidly evolving technology in the field of additive manufacturing. It enables the fabrication of living cellular constructs with complex architectures that are suitable for various biomedical applications, such as tissue engineering, disease modeling, drug screening, and precision regenerative medicine. The ultimate goal of bioprinting is to produce stable, anatomically-shaped, human-scale functional organs or tissue substitutes that can be implanted. Although various bioprinting techniques have emerged to develop customized tissue-engineering substitutes over the past decade, several challenges remain in fabricating volumetric tissue constructs with complex shapes and sizes and translating the printed products into clinical practice. Thus, it is crucial to develop a successful strategy for translating research outputs into clinical practice to address the current organ and tissue crises and improve patients' quality of life. This review article discusses the challenges of the existing bioprinting processes in preparing clinically relevant tissue substitutes. It further reviews various strategies and technical feasibility to overcome the challenges that limit the fabrication of volumetric biological constructs and their translational implications. Additionally, the article highlights exciting technological advances in the 3D bioprinting of anatomically shaped tissue substitutes and suggests future research and development directions. This review aims to provide readers with insight into the state-of-the-art 3D bioprinting techniques as powerful tools in engineering functional tissues and organs.

5.
Med Sci Monit ; 29: e939972, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37516906

ABSTRACT

Bone defects and dysfunctions are prevalent among patients, resulting from various causes such as trauma, tumors, congenital malformations, inflammation, and infection. The demand for bone defect repair materials is second only to blood transfusions. Artificial bone composites offer numerous advantages for bone damage repair, including their availability, absence of rejection or immune reactions, high malleability, exceptional mechanical strength, and outstanding biocompatibility. However, bacterial infections frequently occur during bone transplantation or on graft material structures, leading to severe complications such as osteomyelitis and osteoporosis. Moreover, existing osteogenic materials alone are inadequate to address the challenges posed by traumatic infections, presenting a significant hurdle for clinicians in reconstructing infectious bone defects. Consequently, it is crucial to functionalize artificial bone composites to facilitate effective bone repair and regeneration. Notably, antibacterial capabilities play a critical role in preventing and treating infectious bone defects, and current research is focusing on the interface between artificial bone composites and antibacterial treatments. This article provides an extensive review of the current state of artificial composite bone scaffolds with antibacterial properties for infection prevention in bone grafting.


Subject(s)
Arthrodesis , Bone Transplantation , Humans , Osteogenesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Inflammation
6.
Arch Microbiol ; 205(6): 239, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37195393

ABSTRACT

COVID-19 is a highly infectious disease caused by the SARS-CoV-2 virus, which primarily affects the respiratory system and can lead to severe illness. The virus is extremely contagious, early and accurate diagnosis of SARS-CoV-2 is crucial to contain its spread, to provide prompt treatment, and to prevent complications. Currently, the reverse transcriptase polymerase chain reaction (RT-PCR) is considered to be the gold standard for detecting COVID-19 in its early stages. In addition, loop-mediated isothermal amplification (LMAP), clustering rule interval short palindromic repeats (CRISPR), colloidal gold immunochromatographic assay (GICA), computed tomography (CT), and electrochemical sensors are also common tests. However, these different methods vary greatly in terms of their detection efficiency, specificity, accuracy, sensitivity, cost, and throughput. Besides, most of the current detection methods are conducted in central hospitals and laboratories, which is a great challenge for remote and underdeveloped areas. Therefore, it is essential to review the advantages and disadvantages of different COVID-19 detection methods, as well as the technology that can enhance detection efficiency and improve detection quality in greater details.


Subject(s)
COVID-19 Testing , COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , Clinical Laboratory Techniques/methods , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , Quality Control
7.
Discov Nano ; 18(1): 58, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37032711

ABSTRACT

Recent years have witnessed the emergence of several viruses and other pathogens. Some of these infectious diseases have spread globally, resulting in pandemics. Although biosensors of various types have been utilized for virus detection, their limited sensitivity remains an issue. Therefore, the development of better diagnostic tools that facilitate the more efficient detection of viruses and other pathogens has become important. Nanotechnology has been recognized as a powerful tool for the detection of viruses, and it is expected to change the landscape of virus detection and analysis. Recently, nanomaterials have gained enormous attention for their value in improving biosensor performance owing to their high surface-to-volume ratio and quantum size effects. This article reviews the impact of nanotechnology on the design, development, and performance of sensors for the detection of viruses. Special attention has been paid to nanoscale materials, various types of nanobiosensors, the internet of medical things, and artificial intelligence-based viral diagnostic techniques.

8.
Purinergic Signal ; 19(1): 87-97, 2023 03.
Article in English | MEDLINE | ID: mdl-34677752

ABSTRACT

Most recently, the adenosine is considered as one of the most promising targets for treating pain, with few side effects. It exists in the central nervous system, and plays a key role in nociceptive afferent pathway. It is reported that the A1 receptor (A1R) could inhibit Ca2+ channels to reduce the pain like analgesic mechanism of morphine. And, A2a receptor (A2aR) was reported to enhance the accumulation of AMP (cAMP) and released peptides from sensory neurons, resulting in constitutive activation of pain. Much evidence showed that A1R and A2aR could be served as the interesting targets for the treatment of pain. Herein, virtual screening was utilized to identify the small molecule compounds towards A1R and A2aR, and top six molecules were considered as candidates via amber scores. The molecular dynamic (MD) simulations and molecular mechanics/generalized born surface area (MM/GBSA) were employed to further analyze the affinity and binding stability of the six molecules towards A1R and A2aR. Moreover, energy decomposition analysis showed significant residues in A1R and A2aR, including His1383, Phe1276, and Glu1277. It provided basics for discovery of novel agonists and antagonists. Finally, the agonists of A1R (ZINC19943625, ZINC13555217, and ZINC04698406) and inhibitors of A2aR (ZINC19370372, ZINC20176051, and ZINC57263068) were successfully recognized. Taken together, our discovered small molecules may serve as the promising candidate agents for future pain research.


Subject(s)
Adenosine , Receptor, Adenosine A1 , Humans , Molecular Docking Simulation , Receptor, Adenosine A1/metabolism , Adenosine/pharmacology , Pain , Receptor, Adenosine A2A/metabolism
9.
Int J Bioprint ; 8(4): 613, 2022.
Article in English | MEDLINE | ID: mdl-36404785

ABSTRACT

Three-dimensional (3D) printing technology provides advanced technical support for designing personalized bone tissue engineering scaffold. In this study, two porous diffusing models, namely, average and layered perforated cylindrical scaffolds, were designed for bone tissue engineering scaffold. The designed models were fabricated by liquid crystal display mask stereolithography printing. Structural design and finite element mechanical analysis were conducted. 45S5 bioglass was selected as the raw material for preparing the printing inks for bone tissue engineering scaffolds. By adjusting the viscosity and temperature of the slurry, the maximum proportion of 45S5 bioglass (40 wt%) was added into the photosensitive resin for preparing 3D printing slurry. Our results indicated that an optimized sintering condition includes the debinding rate (0.5°C/min), and temperature raising rate (5°C/min) and sintering temperature (1100°C) were proposed to sinter 45S5 bioceramic scaffolds. The amorphous 45S5 bioglass showed good crystallization after sintering, and the scaffold porous structure showed good integrity. Micropores were observed in the struts which interconnected with each other. Moreover, the porosities were tested as 57% and 45% with a uniform pore distribution. The shrinkage rate was about 10% during sintering process due to binder burning and crystallization shrinkage. The compressive strength of the sintered scaffold was 0.71 ± 0.048 MPa and 2.13 ± 0.054 MPa, respectively, which are consistent with the finite element mechanical analysis simulation results. In conclusion, the layered perforated 45S5 bioglass scaffold shows good mechanical properties and porosity, indicating that it could be a promising candidate for bone tissue engineering.

10.
Front Bioeng Biotechnol ; 10: 921107, 2022.
Article in English | MEDLINE | ID: mdl-35814015

ABSTRACT

Objective: The study aimed to explore a new approach for the treatment of osteosarcoma through combining biomaterials with next-generation small molecule-based targeted therapy. Methods: The model of osteosarcoma was established by 4-hydroxyaminoquinoline 1-oxide (4-HAQO) in mice while the collagen-thermosensitive hydrogel-calcium phosphate (CTC) biocomposites were prepared, and the small molecule inhibitors were virtually screened and synthesized. Then, for the osteosarcoma cell line, MG-63 cells were used to validate our bioinformatic findings in vitro, and the mouse osteosarcoma models were treated by combing CTC composites and small-molecule inhibitors after debridement. Results: Five compounds, namely, ZINC150338698, ZINC14768621, ZINC4217203, ZINC169291448, and ZINC85537017, were found in the ZINK database. Finally, ZINC150338698 was selected for chemical synthesis and experimental verification. The results of the MTT assay and Hoechst staining showed that the small-molecule inhibitor ZINC150338698 could significantly induce MG-63 cell death. Furthermore, CTC composites and ZINC150338698 could repair the bone defects well after the debridement of osteosarcoma. In addition, the biomaterials and small-molecule inhibitors have good biocompatibility and biosafety. Conclusion: Our findings not only offer systems biology approach-based drug target identification but also provide new clues for developing novel treatment methods for future osteosarcoma research.

11.
Life (Basel) ; 12(6)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35743934

ABSTRACT

Trauma and bone loss from infections, tumors, and congenital diseases make bone repair and regeneration the greatest challenges in orthopedic, craniofacial, and plastic surgeries. The shortage of donors, intrinsic limitations, and complications in transplantation have led to more focus and interest in regenerative medicine. Structures that closely mimic bone tissue can be produced by this unique technology. The steady development of three-dimensional (3D)-printed bone tissue engineering scaffold therapy has played an important role in achieving the desired goal. Bioceramic scaffolds are widely studied and appear to be the most promising solution. In addition, 3D printing technology can simulate mechanical and biological surface properties and print with high precision complex internal and external structures to match their functional properties. Inkjet, extrusion, and light-based 3D printing are among the rapidly advancing bone bioprinting technologies. Furthermore, stem cell therapy has recently shown an important role in this field, although large tissue defects are difficult to fill by injection alone. The combination of 3D-printed bone tissue engineering scaffolds with stem cells has shown very promising results. Therefore, biocompatible artificial tissue engineering with living cells is the key element required for clinical applications where there is a high demand for bone defect repair. Furthermore, the emergence of various advanced manufacturing technologies has made the form of biomaterials and their functions, composition, and structure more diversified, and manifold. The importance of this article lies in that it aims to briefly review the main principles and characteristics of the currently available methods in orthopedic bioprinting technology to prepare bioceramic scaffolds, and finally discuss the challenges and prospects for applications in this promising and vital field.

12.
Materials (Basel) ; 15(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35629467

ABSTRACT

Objective: The objective of this study is to compare the bone induction of five kinds of calcium phosphate (Ca-P) biomaterials implanted in mice and explore the vascularization and particle-size-related osteoinductive mechanism. Methods: The following five kinds of Ca-P biomaterials including hydroxyapatite (HA) and/or tricalcium phosphate (TCP) were implanted in the muscle of 30 BALB/c mice (n = 6): 20 nm HA (20HA), 60 nm HA (60HA), 12 µm HA (12HA), 100 nm TCP (100TCP) and 12 µm HA + 100 nm TCP (HATCP). Then, all animals were put on a treadmill to run 30 min at a 6 m/h speed each day. Five and ten weeks later, three mice of each group were killed, and the samples were harvested to assess the osteoinductive effects by hematoxylin eosin (HE), Masson's trichrome and safranine−fast green stainings, and the immunohistochemistry of the angiogenesis and osteogenesis markers CD31 and type I collagen (ColI). Results: The numbers of blood vessels were 139 ± 29, 118 ± 25, 78 ± 15, 65 ± 14 in groups HATCP, 100TCP, 60HA and 20HA, respectively, which were significantly higher than that of group 12HA (12 ± 5) in week 5 (p < 0.05). The area percentages of new bone tissue were (7.33 ± 1.26)% and (8.49 ± 1.38)% in groups 100TCP and HATCP, respectively, which were significantly higher than those in groups 20HA (3.27 ± 0.38)% and 60HA (3.43 ± 0.27)% (p < 0.05); however, no bone tissue was found in group 12HA 10 weeks after transplantation. The expression of CD31 was positive in new blood vessels, and the expression of ColI was positive in new bone tissue. Conclusions: Nanoscale Ca-P biomaterials could induce osteogenesis in mice muscle, and the osteoinductive effects of TCP were about 124% higher than those of 20HA and 114% higher than those of 60HA. The particle size of the biomaterials affected angiogenesis and osteogenesis. There was a positive correlation between the number of blood vessels and the area percentage of new bone tissue; therefore, osteoinduction is closely related to vascularization. Our results provide an experimental basis for the synthesis of calcium−phosphorus matrix composites and for further exploration of the osteoinductive mechanism.

13.
Biomed Mater Eng ; 33(5): 365-375, 2022.
Article in English | MEDLINE | ID: mdl-35180103

ABSTRACT

BACKGROUD: Calcium phosphate biomaterials have excellent bone inductivity, and exercise can promote the bone formation of biomaterials in animals, but it is not clear which exercise mode is better. OBJECTIVE: To explore the effect of different exercise modes on osteoinduction by calcium phosphate-based biomaterials which were implanted in mice. METHOD: The collagen-thermosensitive hydrogel-calcium phosphate (CTC) composite was prepared and transplanted in the thigh muscle of mice, then all mice were divided randomly into four groups (n = 10): the uphill running group, the downhill running group, the swimming group and the control group (conventional breeding). Ten weeks later, the samples were harvested, fixed, decalcified, embedded in paraffin and stained with hematoxylin and eosin (H&E), and then the osteoinduction phenomenon was observed and compared through digital slice scanning system. The area percentage of new bone-related tissues and the number of osteocytes and chondrocytes were counted and calculated. Lastly, the immunohistochemistry of type I collagen (ColI) and osteopontin (OPN) was performed to identify the new bone tissues. RESULTS: The area percentage of new bone-related tissues and the number of osteocytes and chondrocytes were positively correlated; ordering from most to least of each group were as followings: the uphill running group > the swimming group > the downhill running group > the control group. The immunostaining of ColI and OPN results showed that both of the two proteins were identified in the new bone tissues, indicating that the CTC composite could induce ectopic bone formation in mice, especially training for uphill running and swimming. CONCLUSION: Our results show that uphill running or swimming is a form of exercise that is beneficial to osteogenesis. According to this, we propose treatment with artificial bone transplantation to patients who suffer from bone defects. Patients should do moderate exercise, such as running uphill on the treadmill or swimming.


Subject(s)
Running , Animals , Biocompatible Materials/metabolism , Bone and Bones , Calcium Phosphates/metabolism , Mice , Muscle, Skeletal/physiology , Running/physiology
14.
Int J Nanomedicine ; 16: 4289-4319, 2021.
Article in English | MEDLINE | ID: mdl-34211272

ABSTRACT

Recent developments in three-dimensional (3D) printing technology offer immense potential in fabricating scaffolds and implants for various biomedical applications, especially for bone repair and regeneration. As the availability of autologous bone sources and commercial products is limited and surgical methods do not help in complete regeneration, it is necessary to develop alternative approaches for repairing large segmental bone defects. The 3D printing technology can effectively integrate different types of living cells within a 3D construct made up of conventional micro- or nanoscale biomaterials to create an artificial bone graft capable of regenerating the damaged tissues. This article reviews the developments and applications of 3D printing in bone tissue engineering and highlights the numerous conventional biomaterials and nanomaterials that have been used in the production of 3D-printed scaffolds. A comprehensive overview of the 3D printing methods such as stereolithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), and ink-jet 3D printing, and their technical and clinical applications in bone repair and regeneration has been provided. The review is expected to be useful for readers to gain an insight into the state-of-the-art of 3D printing of bone substitutes and their translational perspectives.


Subject(s)
Biocompatible Materials/chemistry , Bone Substitutes , Nanostructures/chemistry , Printing, Three-Dimensional , Tissue Engineering/methods , Alloys/chemistry , Animals , Bone Substitutes/chemistry , Bone and Bones/physiology , Humans , Lasers , Printing, Three-Dimensional/instrumentation , Regeneration , Stereolithography , Titanium/chemistry
15.
Front Pharmacol ; 12: 671138, 2021.
Article in English | MEDLINE | ID: mdl-34093198

ABSTRACT

Glucocappasalin (GCP), a natural product derived from the seeds of Descurainia sophia (L.) Webb. ex Prantl, exhibits potential antitumor activity in HeLa cervical carcinoma cells. In this study, we investigated the anti-cervical cancer property of GCP through the induction of cell cycle arrest, apoptosis, and autophagy in vitro and in vivo, and elucidated the underlying molecular mechanisms. We demonstrated that treatment with GCP inhibited the growth of HeLa, Siha, and Ca Ski cell lines in a dose-dependent manner, with HeLa cells displaying particular sensitivity to the GCP treatment. Subsequently, the expression of cyclin-dependent kinase 1 (CDK1) and polo like kinase 1 (PLK1) were evaluated in HeLa cells using the CDK1 kinase assay kit, the fluorescence polarization assay, real-time quantitative PCR, and western blotting. Our results demonstrate that GCP could be employed to attenuate the expression of CDK1 and PLK1 in a dose- and time-dependent manner. The complementary results obtained by flow cytometry and western blotting allowed us to postulate that GCP may exhibit its antitumor effects by inducing G2/M cell cycle arrest. Moreover, HeLa cells treated with GCP exhibited a loss in mitochondrial membrane potential, together with the activation of caspases 3 and 9, and poly ADP-ribose polymerase (PARP). Additionally, we found that GCP could increase the formation of acidic vesicular organelles (AVOs), as well as the levels of Beclin1, LC3-II, p62, and Atg5 proteins in HeLa cells. Further studies indicated that GCP triggered autophagy via the suppression of the PI3K/AKT/mTOR signaling pathways. The autophagy inhibitor 3-methyladenine (3-MA) was used to determine whether autophagy affects the apoptosis induced by GCP. Interestingly, the inhibition of autophagy attenuated apoptosis. In vivo anti-tumor experiments indicated that GCP (60 mg/kg, i.p.) markedly reduced the growth of HeLa xenografts in nude mice without apparent toxicity. Taken together, we demonstrate that GCP induces cell cycle G2/M-phase arrest, apoptosis, and autophagy by acting on the PI3K/AKT/mTOR signaling pathways in cervical carcinoma cells. Thus, GCP may represent a promising agent in the eradication of cervical cancer.

16.
Sci Rep ; 11(1): 4283, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33608623

ABSTRACT

Nowadays, artificial bone materials have been widely applied in the filling of non-weight bearing bone defects, but scarcely ever in weight-bearing bone defects. This study aims to develop an artificial bone with excellent mechanical properties and good osteogenic capability. Firstly, the collagen-thermosensitive hydrogel-calcium phosphate (CTC) composites were prepared as follows: dissolving thermosensitive hydrogel at 4 °C, then mixing with type I collagen as well as tricalcium phosphate (CaP) powder, and moulding the composites at 37 °C. Next, the CTC composites were subjected to evaluate for their chemical composition, micro morphology, pore size, Shore durometer, porosity and water absorption ability. Following this, the CTC composites were implanted into the muscle of mice while the 70% hydroxyapatite/30% ß-tricalcium phosphate (HA/TCP) biomaterials were set as the control group; 8 weeks later, the osteoinductive abilities of biomaterials were detected by histological staining. Finally, the CTC and HA/TCP biomaterials were used to fill the large segments of tibia defects in mice. The bone repairing and load-bearing abilities of materials were evaluated by histological staining, X-ray and micro-CT at week 8. Both the CTC and HA/TCP biomaterials could induce ectopic bone formation in mice; however, the CTC composites tended to produce larger areas of bone and bone marrow tissues than HA/TCP. Simultaneously, bone-repairing experiments showed that HA/TCP biomaterials were easily crushed or pushed out by new bone growth as the material has a poor hardness. In comparison, the CTC composites could be replaced gradually by newly formed bone and repair larger segments of bone defects. The CTC composites trialled in this study have better mechanical properties, osteoinductivity and weight-bearing capacity than HA/TCP. The CTC composites provide an experimental foundation for the synthesis of artificial bone and a new option for orthopedic patients.


Subject(s)
Biocompatible Materials , Bone Regeneration , Bone Substitutes , Calcium Phosphates , Weight-Bearing , Animals , Bone Substitutes/chemistry , Calcium Phosphates/chemistry , Chemical Phenomena , Hydrogels/chemistry , Imaging, Three-Dimensional , Immunohistochemistry , Materials Testing , Mice , Models, Animal , Prostheses and Implants , Spectrum Analysis , X-Ray Microtomography
17.
J Cancer ; 11(9): 2656-2666, 2020.
Article in English | MEDLINE | ID: mdl-32201536

ABSTRACT

Breast cancer is the second most common types of cancer worldwide. Molecular strategies have developed rapidly; however, novel treatments strategies with high efficacy and lower toxicity are still urgently demanded. Notably, biological networks estimated from microarray data and functional activity network analysis could be utilized to identify and validate potential targets. In this study, two microarray data (GSE13477, GSE31192) were firstly selected, and analyzed by multi-functional activity network analysis to generate the core protein-protein-interaction (PPI) network. Several potential targets were subsequently identified and c-Met and poly (ADP-ribose) polymerase-1 (PARP-1) were manually chosen as the key targets in breast cancer. Furthermore, virtual screening and molecular dynamics (MD) simulations were utilized to recognize novel c-Met/PARP-1 inhibitors in Specs products database. Three small molecules, namely, ZINC19909930, ZINC20032678 and ZINC13562414 were selected. Additionally, these compounds were synthesized, and two breast cancer cell lines, MDA-MB-231 and MCF-7 cells were used to validate our bioinformatic findings in vitro. MTT assay and Hoechst staining showed that ZINC20032678 significantly induced breast cancer cell death, which was mediated through apoptosis by flow cytometry. Furthermore, ZINC20032678 was shown to target the active sites of the both targets and recruitment of downstream apoptotic signaling pathways, eventually inducing breast cancer cell apoptosis. Collectively, our findings not only offer systems biology approaches based drug target identification, but also provide the new clues for developing novel inhibitors for future breast cancer research.

18.
Metabolites ; 10(3)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32151083

ABSTRACT

To investigate the osteoinductive mechanism triggered by hydroxyapatite/ß-tricalcium phosphate (HA/ß-TCP) biomaterials in mice which keep exercising. Methods: The HA/ß-TCP biomaterials were implanted in the muscle of bilateral thighs (non-osseous sites) of eighty Balb/C mice. All animals were then randomly divided into 4 groups (n = 20). In group 1 (negative control group), the mice were fed routinely. In group 2 (running group), all mice were put on a treadmill which was set to a 60-degree incline. The mice ran 20 min thrice each day. A 5-minute break was included in the routine from day three onwards. In group 3 (weight-bearing group), all mice underwent weight-bearing running. The mice in this group performed the same routine as group 2 while carrying 5 g rubber weights. In group 4 (positive control group), dexamethasone was injected in the implanted sites of the biomaterials from the day of the operation. All mice were injected once per week and received a total of 8 injections. One and eight weeks after surgery, the blood serum was collected to detect inflammatory and immunological factors by ELISA. In addition to this, biomaterial specimens were obtained to observe inflammatory and osteogenic levels via histological staining and to facilitate analysis of the osteogenic mechanism by Western Blot. Results: The inflammation indexes caused by surgery were alleviated through running or weight-bearing running: The tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were significantly reduced in groups 2 and 3 at week 8. Exercise also enhanced the secretion of interferon-γ (IFN-γ) in mice; this can strengthen their immunity. The new bone tissues were observed in all groups; however, the area percentage of new bone tissues and the number of osteoblasts were highest in the weight-bearing group. Furthermore, the key proteins of wingless/integrated (Wnt) signaling pathway, Wnt1, Wnt3a, and ß-catenin, were up-regulated during osteoinduction. This up-regulation activated runt-related transcription factor-2 (Runx2), increased the expression of osteopontin (OPN) and osteocalcin (OCN). Conclusion: Weight-bearing exercise can promote the bone and bone marrow formation through the Wnt signaling pathway: Observations documented here suggest that the proper exercise is beneficial to the recovery of bone damage.

19.
Biomed Mater Eng ; 30(3): 287-296, 2019.
Article in English | MEDLINE | ID: mdl-30988237

ABSTRACT

OBJECTIVE: Bone remodeling is mediated by the interaction between osteoblasts and osteoclasts, so does osteoinduction triggered by calcium phosphate (CaP) biomaterials. This study aims to investigate the role and function of osteoclasts in ectopic bone formation induced by CaP biomaterials. METHODS: Four kinds of mice, two outbred mouse strains (KM and ICR) and two inbred mouse strains (C57BL/6 and BALB/c), were chosen for the experiments. The hydroxyapatite/𝛽-tricalcium phosphate (HA/𝛽-TCP) biomaterials were implanted into the bilateral thigh muscle of each mouse, and then all mice ran on the treadmill to accelerate the ectopic bone formation. Five and ten weeks later, five mice in each group were euthanized and the samples were harvested for electron microscope scanning or histological identification: hematoxylin and eosin (HE), Masson-trichrome and tartrate-resistant acid phosphatase (TRAP) staining, respectively. The inflammation indexes, angiogenesis, and osteogenic ability were compared among the four kinds of mice, and the role of osteoclasts was analyzed based on this evidence. RESULTS: The number of multinucleated cells, the number of new blood vessels, and the area percentage of new bone tissues were higher in outbred mouse strains than in inbred mouse strains; and there were more TRAP-positive cells in the outbred mouse strains group. We believe that the monocytes from the peripheral blood could migrate into new bone tissues to form osteoclasts. CONCLUSION: Bone induction could be triggered by CaP biomaterials in mice, and osteoclasts could maintain the dynamic balance between bone resorption and remodeling, and induce the production of new bone marrow tissues.


Subject(s)
Biocompatible Materials/pharmacology , Hydroxyapatites/pharmacology , Osteogenesis/drug effects , Animals , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred ICR , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoclasts/cytology , Osteoclasts/drug effects , Prostheses and Implants
20.
J Cancer Res Ther ; 14(1): 18-23, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29516953

ABSTRACT

BACKGROUND: The receptor tyrosine kinase of the epidermal growth factor receptor (EGFR, ErbB) family played an important role in multisignaling pathways, which controlled numerous biological activities including proliferation, differentiation, apoptosis, etc. EGFR abnormalities have been associated with a variety of human tumors, which was a well-characterized target for cancer treatment. It was known to all that drug repositioning has been considered as a useful tool to accelerate the process of drug development. MATERIALS AND METHODS: Herein, a total of 1408 small molecule drugs approved by the Food and Drug Administration (FDA) were employed to identify potential EGFR inhibitors by a series of bioinformatics approaches, including virtual screening and molecular dynamics (MD) simulations. RESULTS: According to the docking score, five small molecules were chosed for further MD simulations. Following the 5 ns MD simulations, ZINC03830276 (Benzonatate) were finally recognized as "new use" of FDA-approved EGFR-targeting drug. CONCLUSIONS: Our findings suggested that the small molecule ZINC03830276 (Benzonatate) could be a promising EGFR inhibitor candidate and may also provide new ideas for designing more potent EGFR inhibitors for the future study.


Subject(s)
Antineoplastic Agents/chemistry , Computer Simulation , Drug Discovery , ErbB Receptors/chemistry , Protein Kinase Inhibitors/chemistry , Antineoplastic Agents/pharmacology , Drug Discovery/methods , ErbB Receptors/antagonists & inhibitors , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Ligands , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...