Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mycopathologia ; 189(1): 4, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231458

ABSTRACT

BACKGROUND: Recently, the prevalence of invasive fungal infections has been on the rise, and one of the prevalent symptoms frequently observed is bone deterioration and bone loss. MATERIALS AND METHODS: Using an in vitro model we studied how Aspergillus fumigatus invades the bone. Pathological analysis was then employed to observe the structure and distinctive features of the invading fungal elements within the bone invasion model. Meanwhile, the antifungal effects of itraconazole, voriconazole, posaconazole, and amphotericin B were evaluated. RESULTS: The pathological findings showed that in the experimental group, fungal spores and hyphae invaded the bone tissue or were observed growing in the vicinity of the bone edge tissues, as indicated by both HE and PAS staining. In contrast, no fungal elements were observed in the control group, indicating that the in vitro bone invasion model of A. fumigatus was successfully constructed. Furthermore, the findings from the antifungal sensitivity test demonstrated that the lowest effective concentrations of antifungal drugs against the bone invasion model were as follows: 4 µg/ml for itraconazole, 0.5 µg/ml for voriconazole, 2 µg/ml for posaconazole, and 2 µg/ml for amphotericin B. DISCUSSION: The successful construction of the bone invasion model of A. fumigatus has provided a solid basis for future investigations into the mechanisms underlying A. fumigatus bone invasion and the study of its virulence factors. Utilizing bone models is of utmost importance in advancing the development of novel antifungal treatment approaches, as well as in effectively preventing and treating fungal bone invasion and osteolytic diseases.


Subject(s)
Antifungal Agents , Itraconazole , Antifungal Agents/pharmacology , Itraconazole/pharmacology , Voriconazole/pharmacology , Amphotericin B/pharmacology , Aspergillus fumigatus , Bone and Bones
2.
Cancer Nanotechnol ; 14(1): 28, 2023.
Article in English | MEDLINE | ID: mdl-37009262

ABSTRACT

Lung cancer is the leading cause of cancer mortality. As a heterogeneous disease, it has different subtypes and various treatment modalities. In addition to conventional surgery, radiotherapy and chemotherapy, targeted therapy and immunotherapy have also been applied in the clinics. However, drug resistance and systemic toxicity still cannot be avoided. Based on the unique properties of nanoparticles, it provides a new idea for lung cancer therapy, especially for targeted immunotherapy. When nanoparticles are used as carriers of drugs with special physical properties, the nanodrug delivery system ensures the accuracy of targeting and the stability of drugs while increasing the permeability and the aggregation of drugs in tumor tissues, showing good anti-tumor effects. This review introduces the properties of various nanoparticles including polymer nanoparticles, liposome nanoparticles, quantum dots, dendrimers, and gold nanoparticles and their applications in tumor tissues. In addition, the specific application of nanoparticle-based drug delivery for lung cancer therapy in preclinical studies and clinical trials is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL