Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Sci ; 41(4): 764-769, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34403101

ABSTRACT

OBJECTIVE: The expression levels of histone deacetylase 2 (HDAC2), eukaryotic initiation factor 5 (eIF5), and eukaryotic initiation factor 6 (eIF6), and relationship between HDAC2 and eIF5 or eIF6 in lung cancer tissues were investigated, in order to charify the relationship between HDAC2 and the prognosis of lung cancer patients and its influence on the expression of eIF5 and eIF6. METHODS: The expression of HDAC2, eIF5, and eIF6 in lung cancer tissues was detected by quantitative reverse transcription polymerase chain reaction. The expression correlation between HDAC2 and eIF5 or eIF6 was tested using a t test. The correlation between HDAC2 and eIF5 or eIF6 was analyzed using the TCGA database. The identified cells were constructed with small interfering siRNA and HDAC2 overexpression plasmid. The proliferation and migration ability of the identified cells was investigated by CCK8 and Transwell assays, respectively. RESULTS: HDAC2, eIF5, and eIF6 were overexpressed in lung cancer tissues, and HDAC2 expression level was negatively correlated with the prognosis of lung cancer patients. HDAC2 expression level was positively correlated with eIF5 and eIF6 expression levels. HDAC2 could regulate the expression of eIF5 and eIF6. The regulation of proliferation and invasion of lung cancer cells by HDAC2 depended on eIF5 and eIF6. CONCLUSION: HDAC2, eIF5, and eIF6 were closely related with lung cancer tumorigenesis, which might be potential biological markers and therapeutic targets for lung cancer.


Subject(s)
Carcinogenesis/genetics , Eukaryotic Initiation Factor-5/genetics , Histone Deacetylase 2/genetics , Lung Neoplasms/genetics , Peptide Initiation Factors/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Progression-Free Survival , RNA Interference , RNA, Small Interfering/genetics
2.
Vet Microbiol ; 257: 109080, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33915344

ABSTRACT

Pseudorabies virus (PRV) is related to alphaherpesvirus and varicellovirus. pUL16 is a conserved protein in all herpesviruses, and studies have shown that UL16 can interact with the viral proteins pUL11, pUL49, pUL21, gD, and gE. In this study, we found that pUL16 interacted with the viral capsid protein VP26, which could not translocate into the nucleus itself but did appear in the nucleus. We further determined whether pUL16 assists the translocation of VP26 into the nucleus. We found that pUL16 interacted with VP26 with or without viral proteins, and since VP26 itself did not contain a nuclear location signal, we concluded that pUL16 assisted the translocation of VP26 into the nucleus. Deletion of UL16 and UL35 significantly reduced the 50 % tissue culture infective dose, virulence, attachment, and internalization of PRV in cells. These results show that the interaction between pUL16 and VP26 influences the growth and virulence of pseudorabies virus. Our research is the first study to show that pUL16 interacts with VP26, which may explain the targeting site of UL16 and viral capsids. It is also the first to show that UL16 assists the transport of other viral proteins to organelles. Previous researches on pUL16 usually emphasized its interaction with pUL11, pUL21, and gE, and sometimes commented on pUL49 and gD. Our research focuses on the novel interaction between pUL16 and VP26, thereby enriching the studies on herpesviruses and possibly providing different directions for researchers.


Subject(s)
Capsid Proteins/metabolism , Cell Nucleus/metabolism , Herpesvirus 1, Suid/metabolism , Protein Interaction Domains and Motifs , Viral Proteins/genetics , Viral Proteins/metabolism , Active Transport, Cell Nucleus , Animals , Capsid Proteins/genetics , Cell Line , Chlorocebus aethiops , Female , Gene Deletion , HEK293 Cells , Herpesvirus 1, Suid/genetics , Humans , Mice, Inbred BALB C , Swine , Vero Cells , Virus Replication
3.
Front Vet Sci ; 7: 484, 2020.
Article in English | MEDLINE | ID: mdl-32974393

ABSTRACT

Pseudorabies virus (PRV) is the etiological agent of Aujeszky's disease, which has caused severe economic loss in China since its re-emergence in 2011. UL46, a late gene of herpesvirus, codes for the abundant but non-essential viral phosphoproteins 11 and 12 (VP11/12). In this study, VP11/12 was found to localize inside both the nucleus and cytoplasm. The nuclear localization signal (NLS) of VP11/12 was identified as 3RRARGTRRASWKDASR18. Further research identified α5 and α7 to be the receptors for NLS and the chromosome region maintenance 1 (CRM1) to be the receptor for the nuclear export signal. Moreover, we found that PRV VP11/12 interacts with EP0 and the stimulator of interferon genes protein (STING), whereas the NLS of VP11/12 is the important part for VP11/12 to interact with UL48. To our knowledge, this is the first study to provide reliable evidence verifying the nuclear localization of VP11/12 and its role as an additional shuttling tegument protein for PRV. In addition, this is also the first study to elucidate the interactions between PRV VP11/12 and EP0 as well as between PRV VP11/12 and STING, while identifying the precise interaction sites of PRV VP11/12 and VP16.

4.
Biochem Biophys Res Commun ; 519(2): 330-336, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31514997

ABSTRACT

Pseudorabies virus (PRV), the agent of pseudorabies, has raised considerable attention since 2011 due to the outbreak of emerging PRV variants in China. In the present study, we obtained two monoclonal antibodies (mAbs) known as 2E5 and 5C3 against the glycoprotein E (gE) of a PRV variant (JS-2012 strain). The two mAbs reacted with wild PRV but not the vaccine strain (gE-deleted virus). The 2E5 was located in 161RLRRE165, which was conserved in almost of all PRV strains, while 5C3 in 148EMGIGDY154 was different from almost of all genotype I PRV, in which the 149th amino acid is methionine (M) instead of arginine (R). The two epitopes peptides located in the hydrophilic region and reacted with positive sera against genotype II PRV (JS-2012), which suggests they were likely dominant B-cell epitopes. Furthermore, the mutant peptide 148ERGIGDY154 (genotype I) did not react with the mAb 5C3 or positive sera against genotype II PRV (JS-2012). In conclusion, both mAb 2E5 and 5C3 could be used to identify wild PRV strains from vaccine strains, and mAb 5C3 and the epitope peptide of 5C3 might be used for epidemiological investigation to distinguish genotype II from genotype I PRV.


Subject(s)
Antibodies, Monoclonal/immunology , Epitopes, B-Lymphocyte/immunology , Herpesvirus 1, Suid/chemistry , Viral Envelope Proteins/immunology , Animals , Cell Line , Chlorocebus aethiops , Herpesvirus 1, Suid/drug effects , Herpesvirus 1, Suid/immunology , Mice , Peptides/pharmacology , Swine , Vero Cells , Viral Envelope Proteins/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...