Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Parasite ; 31: 6, 2024.
Article in English | MEDLINE | ID: mdl-38334686

ABSTRACT

Previous studies have shown that recombinant Trichinella spiralis galectin (rTsgal) is characterized by a carbohydrate recognition domain sequence motif binding to beta-galactoside, and that rTsgal promotes larval invasion of intestinal epithelial cells. Galactomannan is an immunostimulatory polysaccharide composed of a mannan backbone with galactose residues. The aim of this study was to investigate whether galactomannan inhibits larval intrusion of intestinal epithelial cells and enhances antibody-dependent cellular cytotoxicity (ADCC), killing newborn larvae by polarizing macrophages to the M1 phenotype. The results showed that galactomannan specially binds to rTsgal, and abrogated rTsgal facilitation of larval invasion of intestinal epithelial cells. The results of qPCR, Western blotting, and flow cytometry showed that galactomannan and rTsgal activated macrophage M1 polarization, as demonstrated by high expression of iNOS (M1 marker) and M1 related genes (IL-1ß, IL-6, and TNF-α), and increased CD86+ macrophages. Galactomannan and rTsgal also increased NO production. The killing ability of macrophage-mediated ADCC on larvae was also significantly enhanced in galactomannan- and rTsgal-treated macrophages. The results demonstrated that Tsgal may be considered a potential vaccine target molecule against T. spiralis invasion, and galactomannan may be a novel adjuvant therapeutic agent and potential vaccine adjuvant against T. spiralis infection.


Title: Le galactomannane inhibe l'invasion par Trichinella spiralis des cellules de l'épithélium intestinal et améliore la cytotoxicité cellulaire dépendante des anticorps tuant les larves en activant la polarisation des macrophages. Abstract: Des études antérieures ont montré que la galectine recombinante de Trichinella spiralis (rTsgal) est caractérisée par un motif de séquence de domaines de reconnaissance des glucides se liant au bêta-galactoside, et que la rTsgal favorise l'invasion larvaire des cellules épithéliales intestinales. Le galactomannane est un polysaccharide immunostimulateur composé d'un squelette mannane avec des résidus galactose. Le but de cette étude était de déterminer si le galactomannane inhibe l'intrusion larvaire des cellules épithéliales intestinales et améliore la cytotoxicité cellulaire dépendante des anticorps (CCDA) tuant les larves nouvelles-nées en polarisant les macrophages au phénotype M1. Les résultats ont montré que le galactomannane se liait spécialement au rTsgal et supprimait la facilitation du rTsgal sur l'invasion larvaire des cellules épithéliales intestinales. Les résultats de la qPCR, du Western blot et de la cytométrie en flux ont montré que le galactomannane et le rTsgal activaient la polarisation des macrophages M1, comme le démontre la forte expression de l'iNOS (marqueur de M1) et des gènes liés à M1 (IL-1ß, IL-6 et TNF-α), et l'augmentation des macrophages CD86+. Le galactomannane et le rTsgal ont également augmenté la production de NO. La capacité de destruction de la CCDA médiée par les macrophages sur les larves était également significativement améliorée dans les macrophages traités au galactomannane et au rTsgal. Les résultats ont démontré que Tsgal pourrait être considéré comme une molécule cible potentielle d'un vaccin contre l'invasion par T. spiralis, et que le galactomannane pourrait être un nouvel agent thérapeutique adjuvant et un adjuvant vaccinal potentiel contre l'infection à T. spiralis.


Subject(s)
Galactose/analogs & derivatives , Rodent Diseases , Trichinella spiralis , Trichinellosis , Animals , Mice , Mannans/pharmacology , Mannans/metabolism , Larva/genetics , Intestinal Mucosa , Antibody-Dependent Cell Cytotoxicity , Mice, Inbred BALB C
2.
PLoS Negl Trop Dis ; 18(1): e0011872, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38190388

ABSTRACT

BACKGROUND: Gut epithelium is the first natural barrier against Trichinella spiralis larval invasion, but the mechanism by which larval penetration of gut epithelium is not completely elucidated. Previous studies showed that proteases secreted by T. spiralis intestinal infective larvae (IIL) degraded tight junctions (TJs) proteins of gut epithelium and mediated larval invasion. A new T. spiralis serine proteinase (TsSPc) was identified in the IIL surface proteins and ES proteins, rTsSPc bound to the intestinal epithelial cell (IECs) and promoted larval invasion of IECs. The aim of this study was to characterize the interacted proteins of TsSPc and IECs, and to investigate the molecular mechanisms of TsSPc mediating larval invasion of gut mucosa. METHODOLOGY/PRINCIPAL FINDING: IIFT results showed natural TsSPc was detected in infected murine intestine at 6, 12 hours post infection (hpi) and 3 dpi. The results of GST pull-down, mass spectrometry (MS) and Co-IP indicated that rTsSPc bound and interacted specifically with receptor for activated protein C kinase 1 (RACK1) in Caco-2 cells. rTsSPc did not directly hydrolyze the TJs proteins. qPCR and Western blot showed that rTsSPc up-regulated RACK1 expression, activated MAPK/ERK1/2 pathway, reduced the expression levels of gut TJs (occludin and claudin-1) and adherent protein E-cad, increased the paracellular permeability and damaged the integrity of intestinal epithelial barrier. Moreover, the RACK1 inhibitor HO and ERK1/2 pathway inhibitor PD98059 abolished the rTsSPc activating ERK1/2 pathway, they also inhibited and abrogated the rTsSPc down-regulating expression of occludin, claudin-1 and E-cad in Caco-2 monolayer and infected murine intestine, impeded larval invasion and improved intestinal epithelial integrity and barrier function, reduced intestinal worm burdens and alleviated intestinal inflammation. CONCLUSIONS: rTsSPc bound to RACK1 receptor in gut epithelium, activated MAPK/ERK1/2 pathway, decreased the expression of gut epithelial TJs proteins and disrupted the epithelial integrity, consequently mediated T. spiralis larval invasion of gut epithelium. The results are valuable to understand T. spiralis invasion mechanism, and TsSPc might be regarded as a vaccine target against T. spiralis invasion and infection.


Subject(s)
Trichinella spiralis , Trichinellosis , Humans , Animals , Mice , Larva/physiology , Serine Proteases/genetics , Caco-2 Cells , Claudin-1/metabolism , MAP Kinase Signaling System , Occludin/metabolism , Helminth Proteins/metabolism , Epithelial Cells/metabolism , Mice, Inbred BALB C , Intestinal Mucosa/metabolism , Receptors for Activated C Kinase/metabolism , Neoplasm Proteins/genetics
3.
Acta Trop ; 249: 107076, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37977254

ABSTRACT

The research aimed to describe a new Trichinella spiralis dipeptidyl peptidase 1 (TsDPP1) and investigate its functions in the larval invasion of intestinal epithelial cells (IECs). The gene TsDPP1 was successfully replicated and produced in Escherichia coli BL21 (DE3), showing a strong immune response. TsDPP1 was detected in diverse stages of T. spiralis and showed significant expression in the intestine infective larvae (IIL) and adult worms at 6 days post infection, as confirmed by qPCR and Western blot analysis. The primary localization of TsDPP1 in this parasite was observed in cuticles, stichosomes, and embryos by using the indirect immunofluorescence assay (IIFA). rTsDPP1 exhibited the enzymatic function of natural dipeptidyl peptidase and showed specific binding to IECs, and the binding site was found to be localized on cell membrane. Following transfection with dsRNA-TsDPP1, the expression of TsDPP1 mRNA and protein in muscle larvae (ML) were decreased by approximately 63.52 % and 58.68 %, correspondingly. The activity of TsDPP1 in the ML and IIL treated with dsRNA-TsDPP1 was reduced by 42.98 % and 45.07 %, respectively. The acceleration of larval invasion of IECs was observed with rTsDPP1, while the invasion was suppressed by anti-rTsDPP1 serum. The ability of the larvae treated with dsRNA-TsDPP1 to invade IECs was hindered by 31.23 %. In mice infected with dsRNA-treated ML, the intestinal IIL, and adults experienced a significant decrease in worm burdens and a noticeable reduction in adult female length and fecundity compared to the PBS group. These findings indicated that TsDPP1 significantly impedes the invasion, growth, and reproductive capacity of T. spiralis in intestines, suggesting its potential as a target for anti-Trichinella vaccines.


Subject(s)
Cathepsin C , Helminth Proteins , Intestinal Mucosa , Trichinella spiralis , Trichinellosis , Animals , Female , Mice , Epithelial Cells/parasitology , Helminth Proteins/genetics , Helminth Proteins/metabolism , Larva/pathogenicity , Mice, Inbred BALB C , Trichinella spiralis/genetics , Trichinella spiralis/pathogenicity , Trichinellosis/parasitology , Cathepsin C/genetics , Cathepsin C/metabolism , Intestinal Mucosa/parasitology
4.
Acta Neurol Belg ; 123(5): 1663-1678, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36662402

ABSTRACT

OBJECTIVES: To ascertain the clinical characteristics of pediatric patients with contactin-associated protein-like 2 (CASPR2) antibody-associated autoimmune encephalitis (AEs). METHODS: Two cases of CASPR2 antibody-associated AEs have been reported. In addition, a systematic search of literature published between January 2010 and March 2022 through six online databases was conducted to identify the pediatric patients with CASPR2 antibody-associated AEs. Data on demographics, clinical symptoms, laboratory examinations, imaging, treatment, and outcome were collected. RESULTS: Our updated literature search yielded 1,837 publications, of which 21 were selected, and 40 patients in this study met the diagnostic criteria for AE. There were 25 males and 15 females with a mean age of 9.2 years. The most common presenting symptoms are psychiatric symptoms (72.5%), sleep changes (62.5%), and movement disorders (60%). The psychiatric symptoms included mood changes (39.1%), behavior changes (25%), and hallucination (7.5%). In total, 23 cases (57.5%) combined with autonomic dysfunction, such as gastrointestinal dysmotility, cardiovascular-related symptoms, and sweating. No tumors were observed in children. Thirty-eight patients received first-line immunotherapy, and eight received first-line and second-line immunotherapy. All patients had a good clinical response to immune therapy. Mean mRS at onset was 3.4; It was 0.88 at the last follow-up. There was no recurrence during follow-up. CONCLUSION: Psychiatric symptoms, sleep disorders, movement disorders, and cardiovascular-related symptoms are the most common presentation in pediatric patients with CASPR2 antibody-associated AEs. Tumor, particularly with thymoma, is uncommon in children diagnosed with CASPR2 antibody-associated AEs. In addition, prompt diagnosis and immunotherapy can relieve symptoms and improve the prognosis.


Subject(s)
Autoimmune Diseases of the Nervous System , Movement Disorders , Thymus Neoplasms , Male , Female , Humans , Child , Autoantibodies , Autoimmune Diseases of the Nervous System/diagnosis , Contactins
5.
Ther Apher Dial ; 27(2): 197-206, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36165337

ABSTRACT

Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is the most commonly identified cause of autoimmune encephalitis. Therapeutic plasma exchange has been increasingly employed to treat this disease. This expansion is a consequence of improved techniques and apheresis instruments, as well as the recognition of its applicability in neurological diseases. However, several aspects of treatment remain incompletely clarified, and treatment strategies are still heterogeneous, especially with regard to therapeutic plasma exchange in anti-NMDAR encephalitis. This review provides an overview of the use of therapeutic plasma exchange including the principle and mechanisms, the evidence, initial time, efficiency and complications in anti-NMDAR encephalitis.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Hashimoto Disease , Humans , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/complications , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/therapy , Plasma Exchange/methods , Receptors, N-Methyl-D-Aspartate , Hashimoto Disease/therapy
6.
Parasit Vectors ; 15(1): 475, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36539832

ABSTRACT

BACKGROUND: Trichinella spiralis is an important foodborne parasite that presents a severe threat to food safety. The development of an anti-Trichinella vaccine is an important step towards controlling Trichinella infection in food animals and thus ensure meat safety. Trichinella spiralis galectin (Tsgal) is a novel protein that has been identified on the surface of this nematode. Recombinant Tsgal (rTsgal) was found to participate in larval invasion of intestinal epithelium cells (IECs), whereas anti-rTsgal antibodies impeded the invasion. METHODS: The rTsgal/pSIP409- pgsA' plasmid was constructed and transferred into Lactobacillus plantarum strain NC8, following which the in vitro biological properties of rTsgal/NC8 were determined. Five groups of mice were orally immunized three times, with a 2-week interval between immunizations, with recombinant NC8-Tsgal, recombinant NC8-Tsgal + α-lactose, empty NC8, α-lactose only or phosphate-buffered saline (PBS), respectively. The vaccinated mice were infected orally with T. spiralis larvae 2 weeks following the last vaccination. Systemic and intestinal local mucosal immune responses and protection were also assessed, as were pathological changes in murine intestine and skeletal muscle. RESULTS: rTsgal was expressed on the surface of NC8-Tsgal. Oral immunization of mice with rTsgal vaccine induced specific forms of serum immunoglobulin G (IgG), namely IgG1/IgG2a, as well as IgA and gut mucosal secretion IgA (sIgA). The levels of interferon gamma and interleukin-4 secreted by cells of the spleen, mesenteric lymph nodes, Peyer's patches and intestinal lamina propria were significantly elevated at 2-6 weeks after immunization, and continued to rise following challenge. Immunization of mice with the oral rTsgal vaccine produced a significant immune protection against T. spiralis challenge, as demonstrated by a 57.28% reduction in the intestinal adult worm burden and a 53.30% reduction in muscle larval burden, compared to the PBS control group. Immunization with oral rTsgal vaccine also ameliorated intestinal inflammation, as demonstrated by a distinct reduction in the number of gut epithelial goblet cells and mucin 2 expression level in T. spiralis-infected mice. Oral administration of lactose alone also reduced adult worm and larval burdens and relieved partially inflammation of intestine and muscles. CONCLUSIONS: Immunization with oral rTsgal vaccine triggered an obvious gut local mucosal sIgA response and specific systemic Th1/Th2 immune response, as well as an evident protective immunity against T. spiralis challenge. Oral rTsgal vaccine provided a prospective approach for control of T. spiralis infection.


Subject(s)
Lactobacillus plantarum , Trichinella spiralis , Trichinellosis , Animals , Mice , Lactobacillus plantarum/genetics , Galectins , Larva , Lactose , Trichinellosis/parasitology , Vaccination , Immunoglobulin A, Secretory , Vaccines, Synthetic/genetics , Recombinant Proteins/genetics , Immunoglobulin A , Mice, Inbred BALB C
7.
PLoS Negl Trop Dis ; 16(10): e0010881, 2022 10.
Article in English | MEDLINE | ID: mdl-36315477

ABSTRACT

BACKGROUND: Pyruvate kinase widely exists in many parasites and plays an important role in the energy production for the parasites. Pyruvate kinase might be a potential drug target for killing the parasites. The aim of the present study was to evaluate the biological characteristics and roles of T. spiralis pyruvate kinase M (TsPKM) in sugar metabolism, larval molting and development of T. spiralis. METHODOLOGY/PRINCIPAL FINDINGS: TsPKM has two functional domains of pyruvate kinase and the tertiary structure of TsPKM is tetramer which has the enzyme active site constituted by 8 amino-acid residues (Arg71, Asn73, Asp110, Phe241, Lys267, Glu269, Asp293 and Thr325). Recombinant TsPKM (rTsPKM) was expressed and purified. The rTsPKM had good immunogenicity. RT-PCR and Western blot showed that TsPKM was transcribed and expressed at various developmental stages in T. spiralis lifecycle. Immunofluorescence test showed that TsPKM was principally located in the cuticle, muscle, stichosome, intestine and the intrauterine embryos of female adults. rTsPKM catalyzed the reaction of phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP) to produce pyruvic acid and adenosine triphosphate (ATP). TsPKM played an important role in the metabolism and energy production of T. spiralis. After silencing of TsPKM gene by specific dsRNA-TsPKM2, protein expression and enzyme activity of TsPKM decreased by 50.91 and 26.06%, respectively. After treatment with RNAi, natural TsPKM enzyme activity, larval molting, sugar metabolism, growth and development of T. spiralis were significantly reduced. CONCLUSIONS: TsPKM participates in the larval molting, sugar metabolism, growth and development of T. spiralis and it might be a candidate target of therapeutic drug of trichinellosis.


Subject(s)
Parasites , Trichinella spiralis , Trichinellosis , Animals , Female , Mice , Trichinella spiralis/genetics , Pyruvate Kinase/genetics , Larva/physiology , Molting , Trichinellosis/parasitology , Parasites/metabolism , Sugars , Mice, Inbred BALB C , Helminth Proteins/genetics
8.
Medicine (Baltimore) ; 101(7): e28834, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35363177

ABSTRACT

OBJECTIVES: 3ß-hydroxy-Δ5-C27-steroid dehydrogenase deficiency is a rare autosomal recessive condition. So far fewer than 100 cases have been reported and the factors affecting the prognosis are not yet established. The objective of this study is to explore a possible prediction of the outcome of this rare condition. METHODS: This review was undertaken and reported in accordance with the preferred reporting items for systematic review and meta-analyses guidelines. Demographics, clinical features, gene data, treatment strategies and prognoses at the last follow-up were extracted and summarized. Patients were divided into 2 groups (alive with native liver and liver transplantation/died). Risk factors for the different clinical features were identified. RESULTS: 87 patients that were taken from 7 case reports and 9 case series were included. 38 (38/63, 63.0%) of them presented initial symptoms when they were younger than 1 month and 55 (55/63, 87.3%) less than 1 year. There is a larger proportion of patients younger than 1 month or 1 year at the age of symptom onset in the liver transplantation /died group than patients in alive with the native liver group. The majority of patients (53/62, 85.5%) were diagnosed before the age of 5 year. In all cases, 65 (predicted) pathogenic variants have been identified. Over 70% of patients carried an HSD3B7 variant on exon 1, 4, 5 or 6. 71 (81.6%) were alive at the last follow-up, 16 (18.4%) underwent liver transplantation or died. No significance was found between the group alive with native liver and group liver transplantation /died. CONCLUSION: Age of onset of the symptoms may be a potential factor that determines the outcome of patients with 3ß-HSD deficiency, patients presented with symptoms and signs at an age younger than 1 month or even 1 year may have a worse prognosis. Since there is no difference between clinical outcome and zygosity of gene mutation, we recommend a further study about any possible relationship between mutation site and clinical characteristics or prognosis.


Subject(s)
3-Hydroxysteroid Dehydrogenases , Bile Acids and Salts , Humans , Liver , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...