Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Trends Mol Med ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38890029

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver condition. MASLD is a sexually dimorphic condition, with its development and progression influenced by sex chromosomes and hormones. Estrogens typically protect against, whereas androgens promote, MASLD. Therapeutic approaches for a sex-specific personalized medicine include estrogen replacement, androgen blockers, and novel drugs targeting hormonal pathways. However, the interactions between hormonal factors and inherited genetic variation impacts MASLD risk, necessitating more tailored therapies. Understanding sex disparities and the role of estrogens could improve MASLD interventions and management, whereas clinical trials addressing sex differences are crucial for advancing personalized treatment. This review explores the underappreciated impact of sexual dimorphism in MASLD and discusses the potential therapeutic application of sex-related hormones.

3.
Hepatology ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776184

ABSTRACT

BACKGROUND AND AIMS: The common genetic variant rs641738 C>T is a risk factor for metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), including liver fibrosis, and is associated with decreased expression of the phospholipid-remodeling enzyme MBOAT7 (LPIAT1). However, whether restoring MBOAT7 expression in established MASLD dampens the progression to liver fibrosis and, importantly, the mechanism through which decreased MBOAT7 expression exacerbates MASH fibrosis remain unclear. APPROACH AND RESULTS: We first showed that hepatocyte MBOAT7 restoration in mice with diet-induced steatohepatitis slows the progression to liver fibrosis. Conversely, when hepatocyte-MBOAT7 was silenced in mice with established hepatosteatosis, liver fibrosis but not hepatosteatosis was exacerbated. Mechanistic studies revealed that hepatocyte-MBOAT7 restoration in MASH mice lowered hepatocyte-TAZ (WWTR1), which is known to promote MASH fibrosis. Conversely, hepatocyte-MBOAT7 silencing enhanced TAZ upregulation in MASH. Finally, we discovered that changes in hepatocyte phospholipids due to MBOAT7 loss-of-function promote a cholesterol trafficking pathway that upregulates TAZ and the TAZ-induced profibrotic factor Indian hedgehog (IHH). As evidence for relevance in humans, we found that the livers of individuals with MASH carrying the rs641738-T allele had higher hepatocyte nuclear TAZ, indicating higher TAZ activity, and increased IHH mRNA. CONCLUSIONS: This study provides evidence for a novel mechanism linking MBOAT7-LoF to MASH fibrosis; adds new insight into an established genetic locus for MASH; and, given the druggability of hepatocyte TAZ for MASH fibrosis, suggests a personalized medicine approach for subjects at increased risk for MASH fibrosis due to inheritance of variants that lower MBOAT7.

4.
Cell Rep Med ; 5(3): 101439, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38402623

ABSTRACT

Selenoprotein N (SEPN1) is a protein of the endoplasmic reticulum (ER) whose inherited defects originate SEPN1-related myopathy (SEPN1-RM). Here, we identify an interaction between SEPN1 and the ER-stress-induced oxidoreductase ERO1A. SEPN1 and ERO1A, both enriched in mitochondria-associated membranes (MAMs), are involved in the redox regulation of proteins. ERO1A depletion in SEPN1 knockout cells restores ER redox, re-equilibrates short-range MAMs, and rescues mitochondrial bioenergetics. ERO1A knockout in a mouse background of SEPN1 loss blunts ER stress and improves multiple MAM functions, including Ca2+ levels and bioenergetics, thus reversing diaphragmatic weakness. The treatment of SEPN1 knockout mice with the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) mirrors the results of ERO1A loss. Importantly, muscle biopsies from patients with SEPN1-RM exhibit ERO1A overexpression, and TUDCA-treated SEPN1-RM patient-derived primary myoblasts show improvement in bioenergetics. These findings point to ERO1A as a biomarker and a viable target for intervention and to TUDCA as a pharmacological treatment for SEPN1-RM.


Subject(s)
Muscle Proteins , Muscular Diseases , Humans , Mice , Animals , Muscular Diseases/drug therapy , Muscular Diseases/genetics , Muscular Diseases/metabolism , Taurochenodeoxycholic Acid/pharmacology , Oxidoreductases , Mice, Knockout
6.
Cell Rep Med ; 5(1): 101352, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38232700

ABSTRACT

Steatotic liver disease (SLD) prevails as the most common chronic liver disease yet lack approved treatments due to incomplete understanding of pathogenesis. Recently, elevated hepatic and circulating interleukin 32 (IL-32) levels were found in individuals with severe SLD. However, the mechanistic link between IL-32 and intracellular triglyceride metabolism remains to be elucidated. We demonstrate in vitro that incubation with IL-32ß protein leads to an increase in intracellular triglyceride synthesis, while downregulation of IL32 by small interfering RNA leads to lower triglyceride synthesis and secretion in organoids from human primary hepatocytes. This reduction requires the upregulation of Phospholipase A2 group IIA (PLA2G2A). Furthermore, downregulation of IL32 results in lower intracellular type I collagen levels in di-lineage human primary hepatic organoids. Finally, we identify a genetic variant of IL32 (rs76580947) associated with lower circulating IL-32 and protection against SLD measured by non-invasive tests. These data suggest that IL32 downregulation may be beneficial against SLD.


Subject(s)
Fatty Liver , Liver Diseases , Humans , Collagen Type I/genetics , Collagen Type I/metabolism , Triglycerides/metabolism , Down-Regulation/genetics , Interleukins/genetics , Organoids
8.
Nat Med ; 29(10): 2643-2655, 2023 10.
Article in English | MEDLINE | ID: mdl-37749332

ABSTRACT

Fatty liver disease (FLD) caused by metabolic dysfunction is the leading cause of liver disease and the prevalence is rising, especially in women. Although during reproductive age women are protected against FLD, for still unknown and understudied reasons some develop rapidly progressive disease at the menopause. The patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M variant accounts for the largest fraction of inherited FLD variability. In the present study, we show that there is a specific multiplicative interaction between female sex and PNPLA3 p.I148M in determining FLD in at-risk individuals (steatosis and fibrosis, P < 10-10; advanced fibrosis/hepatocellular carcinoma, P = 0.034) and in the general population (P < 10-7 for alanine transaminase levels). In individuals with obesity, hepatic PNPLA3 expression was higher in women than in men (P = 0.007) and in mice correlated with estrogen levels. In human hepatocytes and liver organoids, PNPLA3 was induced by estrogen receptor-α (ER-α) agonists. By chromatin immunoprecipitation and luciferase assays, we identified and characterized an ER-α-binding site within a PNPLA3 enhancer and demonstrated via CRISPR-Cas9 genome editing that this sequence drives PNPLA3 p.I148M upregulation, leading to lipid droplet accumulation and fibrogenesis in three-dimensional multilineage spheroids with stellate cells. These data suggest that a functional interaction between ER-α and PNPLA3 p.I148M variant contributes to FLD in women.


Subject(s)
Acyltransferases , Non-alcoholic Fatty Liver Disease , Phospholipases A2, Calcium-Independent , Receptors, Estrogen , Animals , Female , Humans , Male , Mice , Acyltransferases/genetics , Acyltransferases/metabolism , Carcinoma, Hepatocellular , Fibrosis , Genetic Predisposition to Disease , Liver/metabolism , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Phospholipases A2, Calcium-Independent/genetics , Phospholipases A2, Calcium-Independent/metabolism , Receptors, Estrogen/metabolism
9.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108628

ABSTRACT

Fatty liver disease is most frequently related to metabolic dysfunction (MAFLD) and associated comorbidities, heightening the risk of cardiovascular disease, and is associated with higher hepatic production of IL32, a cytokine linked with lipotoxicity and endothelial activation. The aim of this study was to examine the relationship between circulating IL32 concentration and blood pressure control in individuals with metabolic dysfunction at high risk of MAFLD. IL32 plasma levels were measured by ELISA in 948 individuals with metabolic dysfunction enrolled in the Liver-Bible-2021 cohort. Higher circulating IL32 levels were independently associated with systolic blood pressure (estimate +0.008 log10 per 1 mmHg increase, 95% c.i. 0.002-0.015; p = 0.016), and inversely correlated with antihypertensive medications (estimate -0.189, 95% c.i. -0.291--0.088, p = 0.0002). Through multivariable analysis, IL32 levels predicted both systolic blood pressure (estimate 0.746, 95% c.i 0.173-1.318; p = 0.010) and impaired blood pressure control (OR 1.22, 95% c.i. 1.09-1.38; p = 0.0009) independently of demographic and metabolic confounders and of treatment. This study reveals that circulating IL32 levels are associated with impaired blood pressure control in individuals at risk of cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Non-alcoholic Fatty Liver Disease , Humans , Blood Pressure , Cardiovascular Diseases/etiology , Pressure , Plasma , Antihypertensive Agents/therapeutic use
10.
JHEP Rep ; 5(5): 100716, 2023 May.
Article in English | MEDLINE | ID: mdl-37035456

ABSTRACT

Background & Aims: Non-alcoholic steatohepatitis (NASH)-induced liver fibrosis is emerging as the most common cause of liver disease. For evaluation of therapies, there is a pressing need to identify non-invasive, mechanism-based biomarkers. A pro-fibrotic process relevant to human NASH involves a pathway in which a transcriptional regulator called TAZ (WWTR1) in hepatocytes induces the secretion of pro-fibrotic Indian hedgehog (IHH). We therefore reasoned that circulating IHH may be a useful mechanism-based marker to assess changes in NASH fibrosis. Methods: Circulating IHH was assessed in wild-type and hepatocyte-TAZ-silenced NASH mice and in three separate cohorts of patients with mild-moderate NASH. Results: Circulating IHH was elevated in mice with diet-induced NASH compared with chow-fed mice or with NASH mice in which hepatocyte TAZ was silenced, which is an effective means to decrease NASH fibrosis. In patients with fatty liver disease with or without NASH, NASH fibrosis was associated with increased concentrations of circulating IHH. Conclusions: The results of these analyses support further investigation to determine whether circulating IHH may be useful as a mechanism-based indicator of target engagement in anticipated future clinical trials testing NASH fibrosis therapies that block the IHH pathway. Impact and implications: Non-alcoholic steatohepatitis (NASH)-induced liver fibrosis is a common cause of liver disease. Circulating biomarkers that reflect liver fibrosis in NASH would be very useful to evaluate therapies. One mechanism of NASH fibrosis with potential as a therapeutic target involves a liver-secreted protein called Indian hedgehog (IHH). We report that circulating levels of IHH in experimental and human NASH associates with NASH and NASH-associated liver fibrosis, providing the premise for further investigation into using circulating IHH to evaluate anticipated future NASH therapies that block the IHH pathway in liver.

11.
Front Oncol ; 12: 997235, 2022.
Article in English | MEDLINE | ID: mdl-36408145

ABSTRACT

Tumors can survive environmental and metabolic stress by triggering homeostatic responses that re-establish the pre-stress status and permit them to grow and thrive. The endoplasmic reticulum (ER) is the organelle where proteins undergo post-translational modifications and are folded and exported to the secretory pathway. Its environment and activity are therefore fundamental for proteostasis, i.e., the plethora of mechanisms controlling protein formation, folding, degradation, and secretion, needed to assure protein balance and cellular health. In different tumor-related conditions, such as after the activation of oncogenes or under hypoxia and nutrient deprivation, the ER experiences stress, triggered by a high load of proteins to be folded compared to the limited folding capacity of the organelle. As a consequence, three ER membrane sensors and the related unfolded protein response (UPR) are activated. The UPR comprises a complex interconnection between signal transduction pathways that promote a homeostatic response that acts by increasing the amount of protein chaperones and of proteins involved in ER-associated protein degradation (ERAD) on one hand and attenuating protein translation on the other. ER-phagy, literally "eating" the ER, is part of another homeostatic response consisting of the clearance of non-functional ER portions including misfolded proteins. This response is also activated by a set of dedicated ER-phagy receptors after ER stimuli, which overlap the stimuli generating ER stress. Thus, the UPR and ER-phagy are two closely related homeostatic mechanisms that cooperate in re-establishing ER homeostasis. However, while the role of the UPR in favoring cancer growth and thriving by promoting angiogenesis, metastasis, chemotherapy resistance, and epithelial-to-mesenchymal transition is consolidated, that of ER-phagy is still in its infancy. This essay provides an overview of emerging concepts on ER stress, the UPR, and ER-phagy and their crosstalk in tumorigenesis. We also critically review new findings on their pharmacological targeting in cancer.

12.
Redox Biol ; 56: 102455, 2022 10.
Article in English | MEDLINE | ID: mdl-36063727

ABSTRACT

N-glycosylation and disulfide bond formation are two essential steps in protein folding that occur in the endoplasmic reticulum (ER) and reciprocally influence each other. Here, to analyze crosstalk between N-glycosylation and oxidation, we investigated how the protein disulfide oxidase ERO1-alpha affects glycosylation of the angiogenic VEGF121, a key regulator of vascular homeostasis. ERO1 deficiency, while retarding disulfide bond formation in VEGF121, increased utilization of its single N-glycosylation sequon, which lies close to an intra-polypeptide disulfide bridge, and concomitantly slowed its secretion. Unbiased mass-spectrometric analysis revealed interactions between VEGF121 and N-glycosylation pathway proteins in ERO1-knockout (KO), but not wild-type cells. Notably, MAGT1, a thioredoxin-containing component of the post-translational oligosaccharyltransferase complex, was a major hit exclusive to ERO1-deficient cells. Thus, both a reduced rate of formation of disulfide bridges, and the increased trapping potential of MAGT1 may increase N-glycosylation of VEGF121. Extending our investigation to tissues, we observed altered lectin staining of ERO1 KO breast tumor xenografts, implicating ERO1 as a physiologic regulator of protein N-glycosylation. Our study, highlighting the effect of ERO1 loss on N-glycosylation of proteins, is particularly relevant not only to angiogenesis but also to other cancer patho-mechanisms in light of recent findings suggesting a close causal link between alterations in protein glycosylation and cancer development.


Subject(s)
Membrane Glycoproteins , Vascular Endothelial Growth Factor A , Disulfides/metabolism , Glycosylation , Humans , Lectins/metabolism , Membrane Glycoproteins/metabolism , Neovascularization, Pathologic/genetics , Oxidation-Reduction , Oxidoreductases/metabolism , Protein Folding , Thioredoxins/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
13.
Hum Mol Genet ; 31(23): 3945-3966, 2022 11 28.
Article in English | MEDLINE | ID: mdl-35848942

ABSTRACT

Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Genome-Wide Association Study , Haplotypes , Polymorphism, Genetic
14.
J Hepatol ; 77(3): 596-606, 2022 09.
Article in English | MEDLINE | ID: mdl-35405176

ABSTRACT

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver disorders and has a strong heritable component. The aim of this study was to identify new loci that contribute to severe NAFLD by examining rare variants. METHODS: We performed whole-exome sequencing in individuals with NAFLD and advanced fibrosis or hepatocellular carcinoma (n = 301) and examined the enrichment of likely pathogenic rare variants vs. the general population. This was followed by validation at the gene level. RESULTS: In patients with severe NAFLD, we observed an enrichment of the p.P426L variant (rs143545741 C>T; odds ratio [OR] 5.26, 95% CI 2.1-12.6; p = 0.003) of autophagy-related 7 (ATG7), which we characterized as a loss-of-function, vs. the general population, and an enrichment in rare variants affecting the catalytic domain (OR 13.9; 95% CI 1.9-612; p = 0.002). In the UK Biobank cohort, loss-of-function ATG7 variants increased the risk of cirrhosis and hepatocellular carcinoma (OR 3.30; 95% CI 1.1-7.5 and OR 12.30, 95% CI 2.6-36, respectively; p <0.001 for both). The low-frequency loss-of-function p.V471A variant (rs36117895 T>C) was also associated with severe NAFLD in the clinical cohort (OR 1.7; 95% CI 1.2-2.5; p = 0.003), predisposed to hepatocellular ballooning (p = 0.007) evolving to fibrosis in the Liver biopsy cohort (n = 2,268), and was associated with liver injury in the UK Biobank (aspartate aminotransferase levels, p <0.001), with a larger effect in severely obese individuals in whom it was linked to hepatocellular carcinoma (p = 0.009). ATG7 protein localized to periportal hepatocytes, particularly in the presence of ballooning. In the Liver Transcriptomic cohort (n = 125), ATG7 expression correlated with suppression of the TNFα pathway, which was conversely upregulated in p.V471A carriers. CONCLUSIONS: We identified rare and low-frequency ATG7 loss-of-function variants that promote NAFLD progression by impairing autophagy and facilitating ballooning and inflammation. LAY SUMMARY: We found that rare mutations in a gene called autophagy-related 7 (ATG7) increase the risk of developing severe liver disease in individuals with dysmetabolism. These mutations cause an alteration in protein function and impairment of self-renewal of cellular content, leading to liver damage and inflammation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Autophagy-Related Protein 7/genetics , Biopsy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Humans , Inflammation/pathology , Liver/pathology , Liver Cirrhosis/complications , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/complications
15.
Environ Int ; 163: 107200, 2022 05.
Article in English | MEDLINE | ID: mdl-35349910

ABSTRACT

Three-dimensional (3D) structured organoids are the most advanced in vitro models for studying human health effects, but their application to evaluate the biological effects associated with microplastic exposure was neglected until now. Fibers from synthetic clothes and fabrics are a major source of airborne microplastics, and their release from dryer machines is poorly understood. We quantified and characterized the microplastic fibers (MPFs) released in the exhaust filter of a household dryer and tested their effects on airway organoids (1, 10, and 50 µg mL-1) by optical microscopy, scanning electron microscopy (SEM), confocal microscopy and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). While the presence of MPFs did not inhibit organoid growth, we observed a significant reduction of SCGB1A1 gene expression related to club cell functionality and a polarized cell growth along the fibers. The MPFs did not cause relevant inflammation or oxidative stress but were coated with a cellular layer, resulting in the inclusion of fibers in the organoid. This effect could have long-term implications regarding lung epithelial cells undergoing repair. This exposure study using human airway organoids proved suitability of the model for studying the effects of airborne microplastic contamination on humans and could form the basis for further research regarding the toxicological assessment of emerging contaminants such as micro- or nanoplastics.


Subject(s)
Microplastics , Plastics , Humans , Organoids , Textiles
16.
Biomed Opt Express ; 13(11): 5709-5720, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36733760

ABSTRACT

Tomographic quantitative phase imaging (QPI) lacks an absolute refractive index value baseline, which poses a problem when large dense objects extending over multiple fields of view are measured volume by volume and stitched together. Some of the measurements lack the natural baseline value that is provided by the mounting medium with a known refractive index. In this work, we discuss the problem of the refractive index (RI) baseline of individual reconstructed volumes that are deprived of access to mounting medium due to the extent of the object. The solution of this problem is provided by establishing the RI offsets based on the overlapping regions. We have proven that the process of finding the offset RI values may be justifiably reduced to the analogous procedure in the 2D baseline correction (2D-BC). Finally, we proposed the enhancement of the state-of-the-art 2D-BC procedure previously introduced in the context of 2D QPI. The processing is validated at the examples of a synthetic dataset and a liver organoid.

17.
Expert Opin Ther Targets ; 25(12): 1033-1043, 2021 12.
Article in English | MEDLINE | ID: mdl-34904923

ABSTRACT

INTRODUCTION: An interaction between metabolic triggers and inherited predisposition underpins the development and progression of non alcoholic fatty liver disease (NAFLD) and fatty liver disease in general. Among the specific NAFLD risk variants, PNPLA3 rs738409 C>G, encoding for the p.I148M protein variant, accounts for the largest fraction of liver disease heritability and is being intensively scrutinized. It promotes intrahepatic lipid accumulation and is associated with lipotoxicity and the more severe phenotypes, including fibrosis and carcinogenesis. Therefore, PNPLA3 appears as an appealing therapeutic target to counter NAFLD progression. AREAS COVERED: The scope of this review is to briefly describe the PNPLA3 gene and protein function before discussing therapeutic approaches for fatty liver aiming at this target. Literature review was carried out searching through PubMed and clinicaltrials.gov website and focusing on the most recent works and reviews. EXPERT OPINION: The main therapeutic strategies under development for NAFLD have shown variable efficacy and side-effects likely due to disease heterogeneity and lack of engagement of the main pathogenic drivers of liver disease. To overcome these limitations, new strategies are becoming available for targeting PNPLA3 p.I148M, responsible for a large fraction of disease susceptibility.


Subject(s)
Non-alcoholic Fatty Liver Disease , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Genotype , Humans , Lipase/genetics , Liver/pathology , Membrane Proteins/genetics , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/therapy
18.
PLoS One ; 16(12): e0260902, 2021.
Article in English | MEDLINE | ID: mdl-34879096

ABSTRACT

In the last few years, there has been a considerable increase in the use of organoids, which is a new three-dimensional culture technology applied in scientific research. The main reasons for their extensive use are their plasticity and multiple applications, including in regenerative medicine and the screening of new drugs. The aim of this study was to better understand these structures by focusing on the choice of the best housekeeping gene (HKG) to perform accurate molecular analysis on such a heterogeneous system. This feature should not be underestimated because the inappropriate use of a HKG can lead to misleading data and incorrect results, especially when the subject of the study is innovative and not totally explored like organoids. We focused our attention on the newly described human pancreatic organoids (hPOs) and compared 12 well-known HKGs (ACTB, B2M, EF1α, GAPDH, GUSB, HPRT, PPIA, RNA18S, RPL13A TBP, UBC and YWHAZ). Four different statistical algorithms (NormFinder, geNorm, BestKeeper and ΔCt) were applied to estimate the expression stability of each HKG, and RefFinder was used to identify the most suitable genes for RT-qPCR data normalization. Our results showed that the intragroup and intergroup comparisons could influence the best choice of the HKG, making clear that the identification of a stable reference gene for accurate and reproducible RT-qPCR data normalization remains a critical issue. In summary, this is the first report on HKGs in human organoids, and this work provides a strong basis to pave the way for further gene analysis in hPOs.


Subject(s)
Genes, Essential , Organoids/metabolism , Pancreas/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/standards , Algorithms , Humans , Organoids/cytology , Pancreas/cytology , RNA, Messenger/analysis , Reference Standards
19.
Transfusion ; 61(12): 3381-3389, 2021 12.
Article in English | MEDLINE | ID: mdl-34647620

ABSTRACT

BACKGROUND: A large proportion of SARS-CoV-2-infected individuals does not develop severe symptoms. Serological tests help in evaluating the spread of infection and disease immunization. The aim of this study was to prospectively examine the trends and risk factors of SARS-CoV-2 infection in blood donors. STUDY DESIGN AND METHODS: We screened 8798 asymptomatic donors presenting in Milan from July 2020 to February 2021 (10,680 presentations) before the vaccination campaign for anti-nucleoprotein (NP) antibodies, and for anti-spike receptor-binding domain (RBD) antibodies and nasopharyngeal swab PCR in those who tested positive. RESULTS: The prevalence of anti-NP+/RBD+ tests increased progressively with time up to ~15% (p < .0001), preceded by a peak of PCR+ tests. Anti-RBD titers were higher in anti-NP IgG+/IgM+ than in IgG+/IgM- individuals and in those with a history of infection (p < .0001); of these 197/630 (31.2%) displayed high titers (>80 AU/ml). Anti-RBD titers declined during follow-up, depending on baseline titers (p < .0001) and time (p = .025). Risk factors for seroconversion were a later presentation date and non-O ABO blood group (p < .001). A positive PCR was detected in 0.7% of participants in the absence of SARS-CoV-2 viremia. CONCLUSIONS: During the second wave of SARS-CoV-2 infection in Northern Italy, we detected an increase in seroprevalence in healthy blood donors from ~4% to ~15%, with a trend paralleling that observed in the general population. Seroconversion was more frequent in carriers of non-O blood groups. The persistence of anti-RBD antibodies was short-lived.


Subject(s)
Asymptomatic Infections , Blood Donors , COVID-19 , Antibodies, Viral/blood , COVID-19/transmission , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Prospective Studies , Risk Factors , SARS-CoV-2 , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...