Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Target Oncol ; 18(2): 269-285, 2023 03.
Article in English | MEDLINE | ID: mdl-36826464

ABSTRACT

BACKGROUND: Patients with triple-negative breast cancer (TNBC) expressing the androgen receptor (AR) respond poorly to neoadjuvant chemotherapy, although AR antagonists have shown promising clinical activity, suggesting these tumors are AR-dependent. cAMP responsive element binding protein (CREB)-binding protein (CBP) and p300 are transcriptional co-activators for the AR, a key driver of AR+ breast and prostate cancer, and may provide a novel therapeutic target in AR+ TNBC. OBJECTIVES: The aim of this study was to determine the therapeutic potential of FT-6876, a new CBP/p300 bromodomain inhibitor, in breast cancer models with a range of AR levels in vitro and in vivo. METHODS: Effects of FT-6876 on the CBP/p300 pathway were determined by combining chromatin immunoprecipitation (ChIP) with precision run-on sequencing (PRO-seq) complemented with H3K27 acetylation (Ac) and transcriptional profiling. The antiproliferative effect of FT-6876 was also measured in vitro and in vivo. RESULTS: We describe the discovery of FT-6876, a potent and selective CBP/p300 bromodomain inhibitor. The combination of ChIP and PRO-seq confirmed the reduction in H3K27Ac at specific promoter sites concurrent with a decrease in CBP/p300 on the chromatin and a reduction in nascent RNA and enhancer RNA. This was associated with a time- and concentration-dependent reduction in H3K37Ac associated with a decrease in AR and estrogen receptor (ER) target gene expression. This led to a time-dependent growth inhibition in AR+ models, correlated with AR expression. Tumor growth inhibition was also observed in AR+ tumor models of TNBC and ER+ breast cancer subtypes with consistent pharmacokinetics and pharmacodynamics. CONCLUSION: Our findings demonstrate FT-6876 as a promising new CBP/p300 bromodomain inhibitor, with efficacy in preclinical models of AR+ breast cancer.


Subject(s)
Receptors, Androgen , Triple Negative Breast Neoplasms , Male , Humans , Receptors, Androgen/metabolism , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Protein Binding , RNA/metabolism
2.
Nat Commun ; 10(1): 137, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30635584

ABSTRACT

Dysregulation of RNA splicing by spliceosome mutations or in cancer genes is increasingly recognized as a hallmark of cancer. Small molecule splicing modulators have been introduced into clinical trials to treat solid tumors or leukemia bearing recurrent spliceosome mutations. Nevertheless, further investigation of the molecular mechanisms that may enlighten therapeutic strategies for splicing modulators is highly desired. Here, using unbiased functional approaches, we report that the sensitivity to splicing modulation of the anti-apoptotic BCL2 family genes is a key mechanism underlying preferential cytotoxicity induced by the SF3b-targeting splicing modulator E7107. While BCL2A1, BCL2L2 and MCL1 are prone to splicing perturbation, BCL2L1 exhibits resistance to E7107-induced splicing modulation. Consequently, E7107 selectively induces apoptosis in BCL2A1-dependent melanoma cells and MCL1-dependent NSCLC cells. Furthermore, combination of BCLxL (BCL2L1-encoded) inhibitors and E7107 remarkably enhances cytotoxicity in cancer cells. These findings inform mechanism-based approaches to the future clinical development of splicing modulators in cancer treatment.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Melanoma/drug therapy , Minor Histocompatibility Antigens/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , RNA Splicing/drug effects , bcl-X Protein/genetics , A549 Cells , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Doxycycline/pharmacology , Drug Synergism , Epoxy Compounds/pharmacology , Female , Humans , Lung Neoplasms/genetics , Macrolides/pharmacology , Melanoma/genetics , Mice , Mice, Nude , RNA Interference , RNA Splicing/genetics , RNA, Small Interfering/genetics , Spliceosomes/drug effects , Spliceosomes/genetics , Exome Sequencing , Xenograft Model Antitumor Assays
3.
Nat Commun ; 8: 15522, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28541300

ABSTRACT

Pladienolide, herboxidiene and spliceostatin have been identified as splicing modulators that target SF3B1 in the SF3b subcomplex. Here we report that PHF5A, another component of this subcomplex, is also targeted by these compounds. Mutations in PHF5A-Y36, SF3B1-K1071, SF3B1-R1074 and SF3B1-V1078 confer resistance to these modulators, suggesting a common interaction site. RNA-seq analysis reveals that PHF5A-Y36C has minimal effect on basal splicing but inhibits the global action of splicing modulators. Moreover, PHF5A-Y36C alters splicing modulator-induced intron-retention/exon-skipping profile, which correlates with the differential GC content between adjacent introns and exons. We determine the crystal structure of human PHF5A demonstrating that Y36 is located on a highly conserved surface. Analysis of the cryo-EM spliceosome Bact complex shows that the resistance mutations cluster in a pocket surrounding the branch point adenosine, suggesting a competitive mode of action. Collectively, we propose that PHF5A-SF3B1 forms a central node for binding to these splicing modulators.


Subject(s)
Adenosine/chemistry , Alternative Splicing , Carrier Proteins/chemistry , Phosphoproteins/chemistry , RNA Splicing Factors/chemistry , Cell Proliferation , Cell Survival , Cryoelectron Microscopy , Crystallography, X-Ray , Epoxy Compounds/chemistry , Exons , Fatty Alcohols/chemistry , HCT116 Cells , Humans , Introns , Macrolides/chemistry , Mass Spectrometry , Mutagenesis, Site-Directed , Mutation , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Phosphoproteins/metabolism , Protein Binding , Protein Conformation , Pyrans/chemistry , RNA Interference , RNA Splicing Factors/metabolism , RNA-Binding Proteins , Recombinant Proteins/chemistry , Sequence Analysis, RNA , Spiro Compounds/chemistry , Spliceosomes/metabolism , Trans-Activators
4.
Cancer Discov ; 6(6): 612-29, 2016 06.
Article in English | MEDLINE | ID: mdl-27099234

ABSTRACT

UNLABELLED: Oncogene-induced senescence is a potent barrier to tumorigenesis that limits cellular expansion following certain oncogenic events. Senescent cells display a repressive chromatin configuration thought to stably silence proliferation-promoting genes while simultaneously activating an unusual form of immune surveillance involving a secretory program referred to as the senescence-associated secretory phenotype (SASP). Here, we demonstrate that senescence also involves a global remodeling of the enhancer landscape with recruitment of the chromatin reader BRD4 to newly activated super-enhancers adjacent to key SASP genes. Transcriptional profiling and functional studies indicate that BRD4 is required for the SASP and downstream paracrine signaling. Consequently, BRD4 inhibition disrupts immune cell-mediated targeting and elimination of premalignant senescent cells in vitro and in vivo Our results identify a critical role for BRD4-bound super-enhancers in senescence immune surveillance and in the proper execution of a tumor-suppressive program. SIGNIFICANCE: This study reveals how cells undergoing oncogene-induced senescence acquire a distinctive enhancer landscape that includes formation of super-enhancers adjacent to immune-modulatory genes required for paracrine immune activation. This process links BRD4 and super-enhancers to a tumor-suppressive immune surveillance program that can be disrupted by small molecule inhibitors of the bromo and extra terminal domain family of proteins. Cancer Discov; 6(6); 612-29. ©2016 AACR.See related commentary by Vizioli and Adams, p. 576This article is highlighted in the In This Issue feature, p. 561.


Subject(s)
Cellular Senescence/genetics , Chromatin Assembly and Disassembly , Enhancer Elements, Genetic , Immunologic Surveillance/genetics , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Binding Sites , Cell Cycle/genetics , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation , Chromatin Immunoprecipitation , Cluster Analysis , Computational Biology/methods , Fibroblasts , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Gene Expression Profiling , Gene Expression Regulation , Hepatocytes/metabolism , High-Throughput Nucleotide Sequencing , Histones/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Nucleotide Motifs , Oncogenes , Paracrine Communication , Position-Specific Scoring Matrices , Protein Binding
5.
Mol Cell ; 47(2): 203-14, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-22795131

ABSTRACT

The expansion of repressive epigenetic marks has been implicated in heterochromatin formation during embryonic development, but the general applicability of this mechanism is unclear. Here we show that nuclear rearrangement of repressive histone marks H3K9me3 and H3K27me3 into nonoverlapping structural layers characterizes senescence-associated heterochromatic foci (SAHF) formation in human fibroblasts. However, the global landscape of these repressive marks remains unchanged upon SAHF formation, suggesting that in somatic cells, heterochromatin can be formed through the spatial repositioning of pre-existing repressively marked histones. This model is reinforced by the correlation of presenescent replication timing with both the subsequent layered structure of SAHFs and the global landscape of the repressive marks, allowing us to integrate microscopic and genomic information. Furthermore, modulation of SAHF structure does not affect the occupancy of these repressive marks, nor vice versa. These experiments reveal that high-order heterochromatin formation and epigenetic remodeling of the genome can be discrete events.


Subject(s)
Chromatin/chemistry , Heterochromatin/chemistry , Histones/metabolism , Bromodeoxyuridine/pharmacology , Cellular Senescence , Chromosomes/ultrastructure , Epigenesis, Genetic , Fibroblasts/cytology , Gene Expression Regulation, Developmental , Gene Silencing , Genome , Genome-Wide Association Study , Histones/chemistry , Humans , Laser Scanning Cytometry/methods , Microscopy, Fluorescence/methods
6.
Genes Dev ; 26(14): 1546-57, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22802529

ABSTRACT

Oncogene-induced senescence is an anti-proliferative stress response program that acts as a fail-safe mechanism to limit oncogenic transformation and is regulated by the retinoblastoma protein (RB) and p53 tumor suppressor pathways. We identify the atypical E2F family member E2F7 as the only E2F transcription factor potently up-regulated during oncogene-induced senescence, a setting where it acts in response to p53 as a direct transcriptional target. Once induced, E2F7 binds and represses a series of E2F target genes and cooperates with RB to efficiently promote cell cycle arrest and limit oncogenic transformation. Disruption of RB triggers a further increase in E2F7, which induces a second cell cycle checkpoint that prevents unconstrained cell division despite aberrant DNA replication. Mechanistically, E2F7 compensates for the loss of RB in repressing mitotic E2F target genes. Together, our results identify a causal role for E2F7 in cellular senescence and uncover a novel link between the RB and p53 pathways.


Subject(s)
Cell Cycle Checkpoints , Cellular Senescence , E2F7 Transcription Factor/metabolism , Retinoblastoma Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Cell Line , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , E2F7 Transcription Factor/genetics , Humans , Mice , Mice, Knockout , Mitosis/genetics , Retinoblastoma Protein/genetics , Tumor Suppressor Protein p53/genetics
7.
Proc Natl Acad Sci U S A ; 109(23): 8971-6, 2012 Jun 05.
Article in English | MEDLINE | ID: mdl-22615382

ABSTRACT

Cellular senescence is a tumor-suppressive program that involves chromatin reorganization and specific changes in gene expression that trigger an irreversible cell-cycle arrest. Here we combine quantitative mass spectrometry, ChIP deep-sequencing, and functional studies to determine the role of histone modifications on chromatin structure and gene-expression alterations associated with senescence in primary human cells. We uncover distinct senescence-associated changes in histone-modification patterns consistent with a repressive chromatin environment and link the establishment of one of these patterns--loss of H3K4 methylation--to the retinoblastoma tumor suppressor and the H3K4 demethylases Jarid1a and Jarid1b. Our results show that Jarid1a/b-mediated H3K4 demethylation contributes to silencing of retinoblastoma target genes in senescent cells, suggesting a mechanism by which retinoblastoma triggers gene silencing. Therefore, we link the Jarid1a and Jarid1b demethylases to a tumor-suppressor network controlling cellular senescence.


Subject(s)
Cellular Senescence/physiology , Chromatin/metabolism , Gene Expression Regulation/genetics , Gene Silencing/physiology , Histones/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Retinoblastoma-Binding Protein 2/metabolism , Cell Line , Chromatin Immunoprecipitation , Genetic Vectors , High-Throughput Nucleotide Sequencing , Humans , Immunoblotting , Mass Spectrometry , Methylation , Retroviridae , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
8.
Cell Cycle ; 11(5): 1008-13, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22333593

ABSTRACT

RB family proteins pRb, p107 and p130 have similar structures and overlapping functions, enabling cell cycle arrest and cellular senescence. pRb, but not p107 or p130, is frequently mutated in human malignancies. In human fibroblasts acutely exposed to oncogenic ras, pRb has a specific role in suppressing DNA replication, and p107 or p130 cannot compensate for the loss of this function; however, a second p53/p21-dependent checkpoint prevents escape from growth arrest. This model of oncogene-induced senescence requires the additional loss of p53/p21 to explain selection for preferential loss of pRb function in human malignancies. We asked whether similar rules apply to the role of pRb in growth arrest of human epithelial cells, the source of most cancers. In two malignant human breast cancer cell lines, we found that individual RB family proteins were sufficient for the establishment of p16-initiated senescence, and that growth arrest in G 1 was not dependent on the presence of functional pRb or p53. However, senescence induction by endogenous p16 was delayed in primary normal human mammary epithelial cells with reduced pRb but not with reduced p107 or p130. Thus, under these circumstances, despite the presence of functional p53, p107 and p130 were unable to completely compensate for pRb in mediating senescence induction. We propose that early inactivation of pRb in pre-malignant breast cells can, by itself, extend proliferative lifespan, allowing acquisition of additional changes necessary for malignant transformation.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16/metabolism , Retinoblastoma Protein/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cells, Cultured , Cellular Senescence , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , G1 Phase Cell Cycle Checkpoints , Humans , MCF-7 Cells , RNA Interference , RNA, Small Interfering/metabolism , Retinoblastoma Protein/antagonists & inhibitors , Retinoblastoma Protein/genetics , Retinoblastoma-Like Protein p107/antagonists & inhibitors , Retinoblastoma-Like Protein p107/genetics , Retinoblastoma-Like Protein p107/metabolism , Retinoblastoma-Like Protein p130/antagonists & inhibitors , Retinoblastoma-Like Protein p130/genetics , Retinoblastoma-Like Protein p130/metabolism , Tumor Suppressor Protein p53/metabolism
9.
Cell ; 148(1-2): 244-58, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22265415

ABSTRACT

p53 is a frequent target for mutation in human tumors, and mutant p53 proteins can actively contribute to tumorigenesis. We employed a three-dimensional culture model in which nonmalignant breast epithelial cells form spheroids reminiscent of acinar structures found in vivo, whereas breast cancer cells display highly disorganized morphology. We found that mutant p53 depletion is sufficient to phenotypically revert breast cancer cells to a more acinar-like morphology. Genome-wide expression analysis identified the mevalonate pathway as significantly upregulated by mutant p53. Statins and sterol biosynthesis intermediates reveal that this pathway is both necessary and sufficient for the phenotypic effects of mutant p53 on breast tissue architecture. Mutant p53 associates with sterol gene promoters at least partly via SREBP transcription factors. Finally, p53 mutation correlates with highly expressed sterol biosynthesis genes in human breast tumors. These findings implicate the mevalonate pathway as a therapeutic target for tumors bearing mutations in p53.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Mevalonic Acid/metabolism , Tumor Suppressor Protein p53/genetics , Cell Line, Tumor , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Metabolic Networks and Pathways/drug effects , Mutation , Prenylation , Promoter Regions, Genetic , Simvastatin/pharmacology , Sterol Regulatory Element Binding Proteins/metabolism
10.
Genes Dev ; 25(20): 2125-36, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21979375

ABSTRACT

Cellular senescence acts as a potent barrier to tumorigenesis and contributes to the anti-tumor activity of certain chemotherapeutic agents. Senescent cells undergo a stable cell cycle arrest controlled by RB and p53 and, in addition, display a senescence-associated secretory phenotype (SASP) involving the production of factors that reinforce the senescence arrest, alter the microenvironment, and trigger immune surveillance of the senescent cells. Through a proteomics analysis of senescent chromatin, we identified the nuclear factor-κB (NF-κB) subunit p65 as a major transcription factor that accumulates on chromatin of senescent cells. We found that NF-κB acts as a master regulator of the SASP, influencing the expression of more genes than RB and p53 combined. In cultured fibroblasts, NF-κB suppression causes escape from immune recognition by natural killer (NK) cells and cooperates with p53 inactivation to bypass senescence. In a mouse lymphoma model, NF-κB inhibition bypasses treatment-induced senescence, producing drug resistance, early relapse, and reduced survival. Our results demonstrate that NF-κB controls both cell-autonomous and non-cell-autonomous aspects of the senescence program and identify a tumor-suppressive function of NF-κB that contributes to the outcome of cancer therapy.


Subject(s)
Cellular Senescence/physiology , Drug Resistance/physiology , Phenotype , Transcription Factor RelA/metabolism , Animals , Cell Line , Cell Line, Tumor , Cell Survival/physiology , Cellular Senescence/drug effects , Cellular Senescence/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lymphoma/metabolism , Mice , Protein Synthesis Inhibitors/pharmacology , RNA, Small Interfering/metabolism , Tetracycline/pharmacology , Tumor Suppressor Protein p53/metabolism
11.
Nature ; 478(7370): 524-8, 2011 Aug 03.
Article in English | MEDLINE | ID: mdl-21814200

ABSTRACT

Epigenetic pathways can regulate gene expression by controlling and interpreting chromatin modifications. Cancer cells are characterized by altered epigenetic landscapes, and commonly exploit the chromatin regulatory machinery to enforce oncogenic gene expression programs. Although chromatin alterations are, in principle, reversible and often amenable to drug intervention, the promise of targeting such pathways therapeutically has been limited by an incomplete understanding of cancer-specific dependencies on epigenetic regulators. Here we describe a non-biased approach to probe epigenetic vulnerabilities in acute myeloid leukaemia (AML), an aggressive haematopoietic malignancy that is often associated with aberrant chromatin states. By screening a custom library of small hairpin RNAs (shRNAs) targeting known chromatin regulators in a genetically defined AML mouse model, we identify the protein bromodomain-containing 4 (Brd4) as being critically required for disease maintenance. Suppression of Brd4 using shRNAs or the small-molecule inhibitor JQ1 led to robust antileukaemic effects in vitro and in vivo, accompanied by terminal myeloid differentiation and elimination of leukaemia stem cells. Similar sensitivities were observed in a variety of human AML cell lines and primary patient samples, revealing that JQ1 has broad activity in diverse AML subtypes. The effects of Brd4 suppression are, at least in part, due to its role in sustaining Myc expression to promote aberrant self-renewal, which implicates JQ1 as a pharmacological means to suppress MYC in cancer. Our results establish small-molecule inhibition of Brd4 as a promising therapeutic strategy in AML and, potentially, other cancers, and highlight the utility of RNA interference (RNAi) screening for revealing epigenetic vulnerabilities that can be exploited for direct pharmacological intervention.


Subject(s)
Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/metabolism , RNA Interference , Transcription Factors/metabolism , Acetylation , Animals , Azepines/pharmacology , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Chromatin/metabolism , Disease Progression , Epigenesis, Genetic/genetics , Gene Expression Regulation, Neoplastic , Genes, myc/genetics , Histones/metabolism , Humans , Leukemia, Myeloid, Acute/pathology , Mice , Neoplasm Transplantation , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/biosynthesis , Nuclear Proteins/genetics , RNA, Small Interfering/genetics , Transcription Factors/antagonists & inhibitors , Transcription Factors/biosynthesis , Transcription Factors/genetics , Triazoles/pharmacology
12.
Aging Cell ; 9(5): 736-46, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20569236

ABSTRACT

The cyclin-dependent kinase inhibitor p16(INK4a) (CDKN2A) is an important tumor suppressor gene frequently inactivated in human tumors. p16 suppresses the development of cancer by triggering an irreversible arrest of cell proliferation termed cellular senescence. Here, we describe another anti-oncogenic function of p16 in addition to its ability to halt cell cycle progression. We show that transient expression of p16 stably represses the hTERT gene, encoding the catalytic subunit of telomerase, in both normal and malignant breast epithelial cells. Short-term p16 expression increases the amount of histone H3 trimethylated on lysine 27 (H3K27) bound to the hTERT promoter, resulting in transcriptional silencing, likely mediated by polycomb complexes. Our results indicate that transient p16 exposure may prevent malignant progression in dividing cells by irreversible repression of genes, such as hTERT, whose activity is necessary for extensive self-renewal.


Subject(s)
Breast Neoplasms/enzymology , Breast/enzymology , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Telomerase/antagonists & inhibitors , Breast/cytology , Breast/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Proliferation , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p16/genetics , Epithelial Cells/cytology , Epithelial Cells/enzymology , Gene Silencing , Histones/metabolism , Humans , Methylation , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Telomerase/genetics , Telomerase/metabolism
13.
Cancer Cell ; 17(4): 376-87, 2010 Apr 13.
Article in English | MEDLINE | ID: mdl-20385362

ABSTRACT

The RB protein family (RB, p107, and p130) has overlapping and compensatory functions in cell-cycle control. However, cancer-associated mutations are almost exclusively found in RB, implying that RB has a nonredundant role in tumor suppression. We demonstrate that RB preferentially associates with E2F target genes involved in DNA replication and is uniquely required to repress these genes during senescence but not other growth states. Consequently, RB loss leads to inappropriate DNA synthesis following a senescence trigger and, together with disruption of a p21-mediated cell-cycle checkpoint, enables extensive proliferation and rampant genomic instability. Our results identify a nonredundant RB effector function that may contribute to tumor suppression and reveal how loss of RB and p53 cooperate to bypass senescence.


Subject(s)
Cellular Senescence/genetics , DNA Replication/genetics , Retinoblastoma/pathology , DNA, Neoplasm/genetics , Gene Transfer Techniques , Genes, Tumor Suppressor , Genetic Vectors , Homeostasis/genetics , Humans , Retinoblastoma/genetics , Retinoblastoma Protein/deficiency , Retinoblastoma Protein/genetics
14.
J Biol Chem ; 282(4): 2666-75, 2007 Jan 26.
Article in English | MEDLINE | ID: mdl-17135242

ABSTRACT

Activated Ras signaling can induce a permanent growth arrest in osteosarcoma cells. Here, we report that a senescence-like growth inhibition is also achieved in human carcinoma cells upon the transduction of H-Ras(V12). Ras-induced tumor senescence can be recapitulated by the transduction of activated, but not wild-type, MEK. The ability for H-Ras(V12) to suppress tumor cell growth is drastically compromised in cells that harbor endogenous activating ras mutations. Notably, growth inhibition of tumor cells containing ras mutations can be achieved through the introduction of activated MEK. Tumor senescence induced by Ras signaling can occur in the absence of p16 or Rb and is not interrupted by the inactivation of Rb, p107, or p130 via short hairpin RNA or the transduction with HPV16 E7. In contrast, inactivation of p21 via short hairpin RNA disrupts Ras-induced tumor senescence. In summary, this study uncovers a senescence-like program activated by Ras signaling to inhibit cancer cell growth. This program appears to be intact in cancer cells that do not harbor ras mutations. Moreover, cancer cells that carry ras mutations remain susceptible to tumor senescence induced by activated MEK. These novel findings can potentially lead to the development of innovative cancer intervention.


Subject(s)
Cellular Senescence , Neoplasms , Signal Transduction , ras Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Humans , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System , Mutation , Neoplasms/metabolism , Neoplasms/pathology , ras Proteins/genetics
15.
Cell ; 126(3): 503-14, 2006 Aug 11.
Article in English | MEDLINE | ID: mdl-16901784

ABSTRACT

Cellular senescence is a stable state of proliferative arrest that provides a barrier to malignant transformation and contributes to the antitumor activity of certain chemotherapies. Senescent cells can accumulate senescence-associated heterochromatic foci (SAHFs), which may provide a chromatin buffer that prevents activation of proliferation-associated genes by mitogenic transcription factors. Surprisingly, we show that the High-Mobility Group A (HMGA) proteins, which can promote tumorigenesis, accumulate on the chromatin of senescent fibroblasts and are essential structural components of SAHFs. HMGA proteins cooperate with the p16(INK4a) tumor suppressor to promote SAHF formation and proliferative arrest and stabilize senescence by contributing to the repression of proliferation-associated genes. These antiproliferative activities are canceled by coexpression of the HDM2 and CDK4 oncogenes, which are often coamplified with HMGA2 in human cancers. Our results identify a component of the senescence machinery that contributes to heterochromatin formation and imply that HMGA proteins also act in tumor suppressor networks.


Subject(s)
Cell Nucleus/metabolism , Cell Transformation, Neoplastic/metabolism , Cellular Senescence/genetics , HMGA Proteins/metabolism , Heterochromatin/metabolism , Tumor Suppressor Proteins/metabolism , Animals , Cell Line , Cell Nucleus/genetics , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cells, Cultured , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Gene Expression Regulation, Neoplastic/genetics , HMGA Proteins/genetics , HMGA2 Protein/genetics , HMGA2 Protein/metabolism , Heterochromatin/genetics , Humans , Mice , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Transcriptional Activation/genetics , Tumor Suppressor Proteins/genetics
16.
J Biol Chem ; 280(29): 26776-87, 2005 Jul 22.
Article in English | MEDLINE | ID: mdl-15908423

ABSTRACT

In cancer cells, the function of the tumor suppressor protein p53 is usually blocked. Impairment of the p53 pathway results in tumor cells with endogenous overexpression of Mdm2 via a naturally occurring single nucleotide polymorphism (SNP) in the mdm2 gene at position 309. Here we report that in mdm2 SNP309 cells, inactivation of p53 results in a chromatin-associated Mdm2-p53 complex without clearance of p53 by protein degradation. Nuclear accumulation of p53 protein in mdm2 SNP309 cells results after 6 h of camptothecin, etoposide, or mitomycin C treatment, with the p53 protein phosphorylated at Ser15. Chromatin immunoprecipitation demonstrated p53 and Mdm2 bound to p53 responsive elements. Interestingly, although the p53 protein was able to bind to DNA, quantitative PCR showed compromised transcription of endogenous target genes. Additionally, exogenously introduced p53 was incapable of activating transcription from p53 responsive elements in SNP309 cells, confirming the trans-acting nature of the inhibitor. Inhibition of Mdm2 by siRNA resulted in transcriptional activation of these p53 targets. Our data suggest that overproduction of Mdm2, resulting from a naturally occurring SNP, inhibits chromatin-bound p53 from activating the transcription of its target genes.


Subject(s)
Chromatin/metabolism , Nuclear Proteins/genetics , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins/genetics , Transcriptional Activation , Tumor Suppressor Protein p53/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Homozygote , Humans , Nuclear Proteins/metabolism , Phosphorylation , Protein Binding , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-mdm2 , Tumor Suppressor Protein p53/deficiency
17.
Mol Cell Biol ; 25(9): 3793-801, 2005 May.
Article in English | MEDLINE | ID: mdl-15831483

ABSTRACT

In Neurospora crassa, the introduction of a transgene can lead to small interfering RNA (siRNA)-mediated posttranscriptional gene silencing (PTGS) of homologous genes. siRNAs can also guide locus-specific methylation of Lys9 of histone H3 (Lys9H3) in Schizosaccharomyces pombe. Here we tested the hypothesis that transgenically derived siRNAs may contemporaneously both activate the PTGS mechanism and induce chromatin modifications at the transgene and the homologous endogenous gene. We carried out chromatin immunoprecipitation using a previously characterized albino-1 (al-1) silenced strain but detected no alterations in the pattern of histone modifications at the endogenous al-1 locus, suggesting that siRNAs produced from the transgenic locus do not trigger modifications in trans of those histones tested. Instead, we found that the transgenic locus was hypermethylated at Lys9H3 in our silenced strain and remained hypermethylated in the quelling defective mutants (qde), further demonstrating that the PTGS machinery is dispensable for Lys9H3 methylation. However, we found that a mutant in the histone Lys9H3 methyltransferase dim-5 was unable to maintain PTGS, with transgenic copies being rapidly lost, resulting in reversion of the silenced phenotype. These results indicate that the defect in PTGS of the Deltadim-5 strain is due to the inability to maintain the transgene in tandem, suggesting a role for DIM-5 in stabilizing such repeated sequences. We conclude that in Neurospora, siRNAs produced from the transgenic locus are used in the RNA-induced silencing complex-mediated PTGS pathway and do not communicate with an RNAi-induced initiation of transcriptional gene silencing complex to effect chromatin-based silencing.


Subject(s)
Histone-Lysine N-Methyltransferase/physiology , Histones/metabolism , Neurospora crassa/genetics , RNA Interference , RNA, Small Interfering/physiology , Tandem Repeat Sequences/physiology , Chromatin Immunoprecipitation , Gene Expression Regulation, Fungal , Genes, Fungal/genetics , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/genetics , Lysine/metabolism , Methylation , Mutation/genetics , Neurospora crassa/metabolism , Protein Methyltransferases , Tandem Repeat Sequences/genetics , Transcription, Genetic , Transgenes
18.
Nucleic Acids Res ; 32(14): 4237-43, 2004.
Article in English | MEDLINE | ID: mdl-15302921

ABSTRACT

RNA interference (RNAi) can silence genes at the transcriptional level by targeting locus-specific Lys9H3 methylation or at the post-transcriptional level by targeting mRNA degradation. Here we have cloned and sequenced genomic regions methylated in Lys9H3 in Neurospora crassa to test the requirements for components of the RNAi pathway in this modification. We find that 90% of clones map to repeated sequences and relics of transposons that have undergone repeat-induced point mutations (RIP). We find siRNAs derived from transposon relics indicating that the RNAi machinery targets these regions. This is confirmed by the fact that the presence of these siRNAs depends on components of the RNAi pathway such as the RdRP (QDE-1), the putative RecQ helicase (QDE-3) and the two Dicer enzymes. We show that Lys9H3 methylation of RIP sequences is not affected in mutants of the RNAi pathway indicating that the RNAi machinery is not involved in transcriptional gene silencing in Neurospora. We find that RIP regions are transcribed and that the transcript level increases in the mutants of the RNAi pathway. These data suggest that the biological function of the Neurospora RNAi machinery is to control transposon relics and repeated sequences by targeting degradation of transcripts derived from these regions.


Subject(s)
DNA Transposable Elements/genetics , Gene Expression Regulation, Fungal , Neurospora crassa/genetics , RNA Interference , DNA, Fungal/chemistry , Gene Silencing , Genome, Fungal , Histones/chemistry , Histones/metabolism , Lysine/metabolism , Methylation , Neurospora crassa/metabolism , Point Mutation , RNA, Fungal/metabolism , RNA, Small Interfering/genetics , Repetitive Sequences, Nucleic Acid
SELECTION OF CITATIONS
SEARCH DETAIL