Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Fitoterapia ; : 106148, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089592

ABSTRACT

Ammi majus L. is a rich source of coumarins in addition to various flavonoids, alkaloids, and terpenoids. Medicinal products of Ammi majus seed, with sunlight exposure, are worldwide used for the treatment of vitiligo (pale-white patches on the skin). To increase the content of seed-coumarins and to investigate the physiological reasons in this respect, two net-house experiments were conducted using foliar-spray treatments (0, 25, 50, 100 and 200 mg L-1) of salicylic acid (SA) (Experiment 1) and putrescine (PUT) (Experiment 2). All studied parameters were improved due to the foliar application of both growth elicitors (SA and PUT). The best outcomes for SA and PUT were obtained at 50 mg L-1 which maximally increased the growth characteristics, physiological and biochemical attributes, and seed quality parameters. In comparison to the control, 50 mg L-1 of SA and PUT increased the chlorophyll content by 26.3% and 25.5%, carotenoid content by 31.4% and 18.5%. In addition 50 mg L-1 of both SA and PUT gives the best results of FTIR (Fourier Transform Infrared Spectrophotometer) & XRD (X-ray Diffraction) analysis. In GC-MS analysis, 50 mg L-1 of SA and PUT increases the Methoxsalen content (17.44 and 16.81%) and 7H-Furo[3,2-g]. Bown (1995) [1] Benzopyran-7-one, 4,9-dimethoxy content(14.92 and 13.93%) and p-camphorene content (13.11 and 12.27%) in contrast to the control. Other important constituents were Pimpinellin (6.31 and 4.08%), Bergapten (8.72 and 6.220, Isospathulenol (7.80 and 2.47), Octadecenoic acid (5.78 and 3.59) and Vitamin E (1.48 and 0.16).

2.
Front Plant Sci ; 15: 1335965, 2024.
Article in English | MEDLINE | ID: mdl-38384769

ABSTRACT

Ocimum tenuiflorum, commonly known as "Holy basil," is renowned for its notable medicinal and aromatic attributes. Its unique fragrance attributes to specific volatile phytochemicals, primarily belonging to terpenoid and/or phenylpropanoid classes, found within their essential oils. The use of nanoparticles (NPs) in agriculture has attracted attention among plant researchers. However, the impact of NPs on the modulation of morpho-physiological aspects and essential oil production in medicinal plants has received limited attention. Consequently, the present study aimed to explore the effect of silicon dioxide (SiO2) and titanium dioxide (TiO2) nanoparticles at various concentrations (viz., DDW (control), Si50+Ti50, Si100+Ti50, Si100+Ti100, Si200+Ti100, Si100+Ti200 and Si200+Ti200 mg L-1) on growth, physiology and essential oil production of O. tenuiflorum at 120 days after planting (DAP). The results demonstrated that the combined application of Si and Ti (Si100+Ti100 mg L-1) exhibited the most favourable outcomes compared to the other combinational treatments. This optimal treatment significantly increased the vegetative growth parameters (root length (33.5%), shoot length (39.2%), fresh weight (62.7%) and dry weight (28.5%)), photosynthetic parameters, enzymatic activities (nitrate reductase and carbonic anhydrase), the overall area of PGTs (peltate glandular trichomes) and essential oil content (172.4%) and yield (323.1%), compared to the control plants. Furthermore, the GCMS analysis showed optimal treatment (Si100+Ti100) significantly improved the content (43.3%) and yield (151.3%) of eugenol, the primary active component of the essential oil. This study uncovers a remarkable and optimal combination of SiO2 and TiO2 nanoparticles that effectively enhances the growth, physiology, and essential oil production in Holy basil. These findings offer valuable insights into maximizing the potential benefits of its use in industrial applications.

3.
Heliyon ; 9(11): e21646, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38058652

ABSTRACT

Nanoparticles (NPs) have gained considerable interest among researchers in the field of plant biology, particularly in the agricultural sector. Among the numerous NPs, the individual application of silicon (Si) or titanium (Ti), in their oxide forms, had a positive influence on growth, physiochemical and yield attributes of plants. However, the synergetic application of both these NPs has not been studied yet. Therefore, the current study was aimed to investigate the effect of combined application of silicon dioxide (SiO2) and titanium dioxide (TiO2) NPs on the growth characters, physiological parameters, and essential oil quality and production of Coleus aromatics Benth. Aqueous solutions of nanoparticles were applied to the foliage of the plants at varying combinations (Si50+Ti50, Si100+Ti50, Si100+Ti100, Si200+Ti100, Si100+Ti200 and Si200+Ti200 mg L-1). Various morpho-physiological, biochemical and yield attributes were assessed at 120 days after planting. The results demonstrated that both Si and Ti NPs improved the growth and photosynthetic efficiency in a dose dependent manner. The best results were obtained by the combined application of Si100+Ti100 mg L-1, and thereafter, the values declined progressively. The maximum improvement in fresh weight (39.5 %) and dry weight (40.8 %) of shoot, fresh weight (45.7 %) and dry weight (49.4 %) of root was observed as compared to respective controls. Moreover, the exogenous application of Si100+Ti100 mg L-1 increased photosynthetic attributes such as total content of chlorophyll (41.7 %), carotenoids (43.7 %), chlorophyll fluorescence (7.1 %), and carbonic anhydrase (23.8 %). All of these contributed to the highest accumulation in the content (129.0 %) and yield (215.5 %) of essential oil (EO), in comparison to the control. Thus, results encouraged the use of SiO2 and TiO2 NPs to be applied in combined form to boost the essential oil production of Coleus aromaticus. The findings of this study may serve agronomists to determine the optimal concentrations of NPs for enhanced production of bioactive compounds with a wide range of industrial applications.

4.
Front Plant Sci ; 14: 1129130, 2023.
Article in English | MEDLINE | ID: mdl-37152142

ABSTRACT

Introduction: The current study was carried out with the hypothesis that foliar application of plant-derived smoke water (PDSW) and karrikinolide (KAR1) might enhanced the plant growth, physiology, and essential oil production of the Mentha arvensis L. Karrikinolide (KAR1) is one of the most important bioactive constituents of PDSW. Methods: Mint (Mentha arvensis L.) was grown in natural conditions in the net-house. Different concentrations of PDSW (1:125, 1:250, 1:500 and 1:1000 v/v) and KAR1 (10-9 M, 10-8 M, 10-7 M and 10-6 M) were used as foliar-spray treatments, using double-distilled water as control. The PDSW was prepared by burning the dried wheat-straw that acted as a growth-promoting substance. Results: Foliar-spray treatment 1:500 v/v of PDSW and 10-8 M of KAR1 proved optimal for enhancing all morphological, physiological, and essential-oil yield related parameters. In comparison with the control, 1:500 v/v of PDSW and 10-8 M of KAR1 increased significantly (p ≤ 0.05) the height of mint plant (19.23% and 16.47%), fresh weight (19.30% and 17.44%), dry weight (35.36% and 24.75%), leaf area (18.22% and 17.46%), and leaf yield per plant (28.41% and 23.74%). In addition, these treatments also significantly increased the photosynthetic parameters, including chlorophyll fluorescence (12.10% and 11.41%), total chlorophyll content (25.70% and 20.77%), and total carotenoid content (29.77% and 27.18%). Likewise, 1:500 v/v of PDSW and 10-8 M of KAR1 significantly increased the essential-oil content (37.09% and 32.25%), essential oil productivity per plant (72.22% and 66.66%), menthol content (29.94% and 25.42%), menthyl acetate content (36.90% and 31.73%), and menthone content (44.38% and 37.75%). Furthermore, the TIC chromatogram of the GCMS analysis revealed the presence of 34 compounds, 12 of which showed major peak areas. Discussion: Treatment 1: 500 v/v of PDSW proved better than the treatment 10-8 M of KAR1 with regard to most of the parameters studied. The outcome of the study can be used as a recommendation tool for agricultural and horticultural crops, since it costs much lesser than that of KAR1. In fact, the foliar application of PDSW proved economical and played bioactive role at very low concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL