Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Foods ; 13(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38928762

ABSTRACT

Recent assessments of the correlations between food and medicine underscore the importance of functional foods in disease prevention and management. Functional foods offer health benefits beyond basic nutrition, with fresh fruits and vegetables being particularly prominent because of their rich polyphenol content. In this study, we elucidated the phytochemicals in ice plant (Mesembryanthemum crystallinum), a globally consumed vegetable, using an LC-QTOF/MS-based untargeted detection method. The phytochemicals were clustered based on their structural similarity using molecular networking and annotated using the in silico tool for network annotation propagation. To identify the bioactive compounds, eight compounds were isolated from ice plant extracts. These compounds were identified using extensive spectroscopic methods, including 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. Additionally, we evaluated the antioxidant and anti-inflammatory activities of all the isolates. Among the tested compounds, three showed antioxidant activity and all eight showed anti-inflammatory activity, demonstrating the potential of ice plant as a functional food.

2.
Polymers (Basel) ; 16(9)2024 May 03.
Article in English | MEDLINE | ID: mdl-38732748

ABSTRACT

A polysaccharide fraction from Diospyros kaki (PLE0) leaves was previously reported to possess immunostimulatory, anti-osteoporotic, and TGF-ß1-induced epithelial-mesenchymal transition inhibitory activities. Although a few beneficial effects against colon cancer metastasis have been reported, we aimed to investigate the anti-metastatic activity of PLE0 and its underlying molecular mechanisms in HT-29 and HCT-116 human colon cancer cells. We conducted a wound-healing assay, invasion assay, qRT-PCR analysis, western blot analysis, gelatin zymography, luciferase assay, and small interfering RNA gene silencing in colon cancer cells. PLE0 concentration-dependently inhibited metastasis by suppressing cell migration and invasion. The suppression of N-cadherin and vimentin expression as well as upregulation of E-cadherin through the reduction of p-GSK3ß and ß-catenin levels resulted in the outcome of this effect. PLE0 also suppressed the expression and enzymatic activity of matrix metalloproteinases (MMP)-2 and MMP-9, while simultaneously increasing the protein and mRNA levels of the tissue inhibitor of metalloproteinases (TIMP-1). Furthermore, signaling data disclosed that PLE0 suppressed the transcriptional activity and phosphorylation of p65 (a subunit of NF-κB), as well as the phosphorylation of c-Jun and c-Fos (subunits of AP-1) pathway. PLE0 markedly suppressed JNK phosphorylation, and JNK knockdown significantly restored PLE0-regulated MMP-2/-9 and TIMP-1 expression. Collectively, our data indicate that PLE0 exerts an anti-metastatic effect in human colon cancer cells by inhibiting epithelial-mesenchymal transition and MMP-2/9 via downregulation of GSK3ß/ß-catenin and JNK signaling.

3.
J Appl Microbiol ; 135(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38794887

ABSTRACT

AIMS: To develop antifungal lactic acid bacteria (LAB) and investigate their antifungal mechanisms against Aspergillus flavus in aflatoxin (AF) production. METHODS AND RESULTS: We isolated 179 LABs from cereal-based fermentation starters and investigated their antifungal mechanism against A. flavus through liquid chromatography-mass spectrometry and co-culture analysis techniques. Of the 179 isolates, antifungal activity was identified in Pediococcus pentosaceus, Lactobacillus crustorum, and Weissella paramesenteroides. These LABs reduced AF concentration by (i) inhibiting mycelial growth, (ii) binding AF to the cell wall, and (iii) producing antifungal compounds. Species-specific activities were also observed, with P. pentosaceus inhibiting AF production and W. paramesenteroides showing AF B1 binding activity. In addition, crucial extracellular metabolites for selecting antifungal LAB were involved in the 2',3'-cAMP-adenosine and nucleoside pathways. CONCLUSIONS: This study demonstrates that P. pentosaceus, L. crustorum, and W. paramesenteroides are key LAB strains with distinct antifungal mechanisms against A. flavus, suggesting their potential as biological agents to reduce AF in food materials.


Subject(s)
Antifungal Agents , Aspergillus flavus , Coculture Techniques , Lactobacillales , Metabolomics , Aspergillus flavus/metabolism , Aspergillus flavus/growth & development , Aspergillus flavus/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Lactobacillales/metabolism , Lactobacillales/growth & development , Fermentation , Aflatoxins/biosynthesis , Edible Grain/microbiology , Pediococcus pentosaceus/metabolism , Antibiosis , Food Microbiology
4.
AMB Express ; 14(1): 14, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38282124

ABSTRACT

Efficient utilization of galactose by microorganisms can lead to the production of valuable bio-products and improved metabolic processes. While Bacillus subtilis has inherent pathways for galactose metabolism, there is potential for enhancement via evolutionary strategies. This study aimed to boost galactose utilization in B. subtilis using adaptive laboratory evolution (ALE) and to elucidate the genetic and metabolic changes underlying the observed enhancements. The strains of B. subtilis underwent multiple rounds of adaptive laboratory evolution (approximately 5000 generations) in an environment that favored the use of galactose. This process resulted in an enhanced specific growth rate of 0.319 ± 0.005 h-1, a significant increase from the 0.03 ± 0.008 h-1 observed in the wild-type strains. Upon selecting the evolved strain BSGA14, a comprehensive whole-genome sequencing revealed the presence of 63 single nucleotide polymorphisms (SNPs). Two of them, located in the coding sequences of the genes araR and glcR, were found to be the advantageous mutations after reverse engineering. The strain with these two accumulated mutations, BSGALE4, exhibited similar specific growth rate on galactose to the evolved strain BSGA14 (0.296 ± 0.01 h-1). Furthermore, evolved strain showed higher productivity of protease and ß-galactosidase in mock soybean biomass medium. ALE proved to be a potent tool for enhancing galactose metabolism in B. subtilis. The findings offer valuable insights into the potential of evolutionary strategies in microbial engineering and pave the way for industrial applications harnessing enhanced galactose conversion.

5.
Foods ; 11(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35741909

ABSTRACT

Ginsenoside Rf (G-Rf) is a saponin of the protopanaxatriol family and a bioactive component of Korean ginseng. Several ginsenosides are known to have a positive effect on exercise endurance, but there is not yet a report on that of G-Rf. Forced swimming tests were performed on G-Rf-treated mice to evaluate the effect of G-Rf on exercise endurance. Subsequently, the expression of markers related to myoblast differentiation and mitochondrial biogenesis in murine skeletal C2C12 myotubes and tibialis anterior muscle tissue was determined using Western blotting, quantitative real-time polymerase chain reaction, and immunofluorescence staining to elucidate the mechanism of action of G-Rf. The swimming duration of the experimental animal was increased by oral gavage administration of G-Rf. Moreover, G-Rf significantly upregulated the myoblast differentiation markers, mitochondrial biogenesis markers, and its upstream regulators. In particular, the mitochondrial biogenesis marker increased by G-Rf was decreased by each inhibitor of the upstream regulators. G-Rf enhances exercise endurance in mice, which may be mediated by myoblast differentiation and enhanced mitochondrial biogenesis through AMPK and p38 MAPK signaling pathways, suggesting that it increases energy production to satisfy additional needs of exercising muscle cells. Therefore, G-Rf is an active ingredient in Korean ginseng responsible for improving exercise performance.

6.
Foods ; 10(12)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34945585

ABSTRACT

We previously reported that the immunostimulatory activity of heat-killed Latilactobacillus sakei K040706 in macrophages and cyclophosphamide (CTX)-treated mice. However, identification of heat-killed L. sakei K040706 (heat-killed LS06) using a validated method is not yet reported. Further, the underlying molecular mechanisms for its immunostimulatory effects in CTX-induced immunosuppressed mice remain unknown. In this study, we developed strain-specific genetic markers to detect heat-killed L. sakei LS06. The lower detection limit of the validated primer set was 2.1 × 105 colony forming units (CFU)/mL for the heat-killed LS06 assay. Moreover, oral administration of heat-killed LS06 (108 or 109 CFU/day, p.o.) effectively improved the body loss, thymus index, natural killer cell activity, granzyme B production, and T and B cell proliferation in CTX-treated mice. In addition, heat-killed LS06 enhanced CTX-reduced immune-related cytokine (interferon-γ, interleukin (IL)-2, and IL-12) production and mRNA expression. Heat-killed LS06 also recovered CTX-altered microbiota composition, including the phylum levels of Bacteroidetes, Firmicutes, and Proteobacteria and the family levels of Muribaculaceae, Prevotellaceae, Tannerellaceae, Christensenellaceae, Gracilibacteraceae, and Hungateiclostridiaceae. In conclusion, since heat-killed L. sakei K040706 ameliorated CTX-induced immunosuppression and modulated gut microbiota composition, they have the potential to be used in functional foods for immune regulation.

7.
Int J Biol Macromol ; 178: 363-372, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33652052

ABSTRACT

We previously reported that an exopolysaccharide-enriched fraction from Bacillus subtilis J92 (B-EPS) could improve immune functions by regulating the immunological parameters of IFN-γ-primed macrophages, CD3/CD28-stimulated splenocytes, and in cyclophosphamide-induced immunosuppressed mice. In the present study, we investigated whether B-EPS contributes to the maintenance of intestinal barrier integrity in a dextran sodium sulfate (DSS)-induced colitis mouse model that mimics human inflammatory bowel disease (IBD). B-EPS treatment improved histological characteristics and common features including a high disease activity index (DAI), an increased spleen weight, and colon shortening in DSS-induced colitis. B-EPS also effectively restored intestinal barrier function by modulating tight junction-related proteins (claudin-1, claudin-2, and occludin) and epithelial-mesenchymal transition (EMT) marker proteins (E-cadherin, N-cadherin, and vimentin). Moreover, B-EPS downregulated immune cell infiltration and inflammatory responses including the production of inflammatory cytokines, such as IL-6 and IL-1ß, and activation of nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3). Taken together, these results suggest that B-EPS could serve as a functional food ingredient for improving intestinal barrier function and alleviating colonic inflammation in IBD.


Subject(s)
Bacillus subtilis/chemistry , Colitis , Dextran Sulfate/toxicity , Intestinal Mucosa , Polysaccharides, Bacterial , Animals , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colitis/pathology , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred ICR , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/pharmacology
8.
Int J Biol Macromol ; 165(Pt A): 1029-1037, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32991896

ABSTRACT

The menopausal syndrome caused by rapid changes in hormone levels greatly influences the quality of life of women. Though hormone replacement therapy (HRT) is widely used to treat the menopausal syndrome, it exhibits many side effects, including the risk of thrombosis, cardiovascular diseases, and increased incidence of breast cancer; thus, diversifying the interest for phytotherapy-based materials as alternatives to HRT. Here, we isolated a crude polysaccharide fraction (CWPF) from Cynanchum wilfordii root that alleviated the ovariectomy-induced uterine atrophy and bone loss without changes in plasma estradiol concentration in mice. Increased plasma levels of follicle-stimulating hormone (FSH), alkaline phosphatase (ALP), osteocalcin (OC) in ovariectomized mice were also reduced to normal levels by CWPF administration. We found that the inhibitory effects of CWPF on menopausal symptoms were mediated by the estrogen receptor ß (ER-ß) specific activation, not ER-α. Moreover, CWPF treatment suppressed the phosphorylation of Akt, suggesting that CWPF alleviates post-menopausal symptoms by regulating ER-ß related Akt signaling pathway. These results demonstrate that the polysaccharides corresponding to CWPF among the water-soluble extracts of CW could be used as a beneficial herbal alternative for the development of therapeutic agents to prevent menopausal syndrome in women.


Subject(s)
Cynanchum/chemistry , Estrogen Receptor beta/genetics , Menopause/drug effects , Polysaccharides/pharmacology , Animals , Estrogens/metabolism , Female , Humans , Menopause/genetics , Mice , Ovariectomy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polysaccharides/chemistry , Quality of Life
9.
Int J Biol Macromol ; 164: 3835-3845, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32835798

ABSTRACT

In the present study, to verify the effect of polysaccharides derived from persimmon leaves (PLE) at epithelial-to-mesenchymal transition (EMT), A549 cells were treated with TGF-ß1 alone or co-treated with TGF-ß1 and PLE (50 and 75 µg/mL). PLE-treated cells showed higher expression of E-cadherin and lower expression of N-cadherin and vimentin compared to TGF-ß1-treated cells by inhibiting the levels of transcription factors, including Snail, Slug, and ZEB1, all associated with EMT. PLE also significantly decreased migration, invasion, and anoikis resistance through TGF-ß1 mediated EMT suppression, whereby PLE inhibited the levels of MMP-2 and MMP-9 while cleaving PARP. These inhibitory effects of PLE against EMT, migration, invasion, and anoikis resistance were determined by activating the canonical SMAD2/3 and non-canonical ERK/p38 signaling pathways. Therefore, these results suggest that PLE could be used as a potential chemical therapeutic agent for early metastasis of lung cancer in vitro.


Subject(s)
Diospyros/chemistry , Epithelial-Mesenchymal Transition/drug effects , Plant Leaves/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Transforming Growth Factor beta1/pharmacology , A549 Cells , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Matrix Metalloproteinase 1 , Polysaccharides/chemistry , Recombinant Proteins , Signal Transduction/drug effects , Transcription Factors/genetics
10.
Nutrients ; 12(8)2020 Jul 27.
Article in English | MEDLINE | ID: mdl-32727012

ABSTRACT

Ginseng consumption has been shown to prevent and reduce many health risks, including cardiovascular disease. However, the ginseng-induced changes in biofluids and tissue metabolomes associated with blood health remain poorly understood. In this study, healthy rats were orally administered ginseng extracts or water for one month. Biofluid and tissue metabolites along with steroid hormones, plasma cytokines, and blood pressure factors were determined to elucidate the relationship between ginseng intake and blood vessel health. Moreover, the effect of ginseng extract on blood vessel tension was measured from the thoracic aorta. Ginseng intake decreased the levels of blood phospholipids, lysophosphatidylcholines and related enzymes, high blood pressure factors, and cytokines, and induced vasodilation. Moreover, ginseng intake decreased the level of renal oxidized glutathione. Overall, our findings suggest that ginseng intake can improve blood vessel health via modulation of vasodilation, oxidation stress, and pro-inflammatory cytokines. Moreover, the decrease in renal oxidized glutathione indicated that ginseng intake is positively related with the reduction in oxidative stress-induced renal dysfunction.


Subject(s)
Metabolome/drug effects , Panax , Plant Extracts/pharmacology , Vasodilation/drug effects , Animals , Aorta, Thoracic/physiology , Blood Pressure/drug effects , Cytokines/blood , Lysophosphatidylcholines/blood , Oxidative Stress/drug effects , Phospholipids/blood , Rats
11.
Foods ; 9(6)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575580

ABSTRACT

Polysaccharides isolated from various plants are considered precious bioactive materials owing to their potent biological activities. Previously, we prepared a polysaccharide fraction (BLE0) isolated from young barley leaves (Hordeum vulgare L.), demonstrating its anti-osteoporotic and immunostimulatory activities. However, data regarding BLE0 toxicity is lacking. To establish its safety, in vitro genotoxicity (chromosomal aberration and bacterial reverse mutation assays) and acute oral toxicity assays were conducted. In the in vitro genotoxicity assays, bacterial reverse mutation and chromosomal aberration assays showed that BLE0 possessed no mutagenicity or clastogenicity. Furthermore, the median lethal dose (LD50) of BLE0 was higher than 5000 mg/kg in female and male Sprague-Dawley (SD) rats and no adverse effects were observed in terms of mortality and abnormal changes in clinical signs (body weight and necropsy). Based on these results, BLE0 was found to be safe with regards to genotoxicity under our test conditions, demonstrating no acute oral toxicity up to 5000 mg/kg in SD rats.

12.
Int J Biol Macromol ; 161: 449-456, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32531355

ABSTRACT

Nelumbo nucifera, more commonly known as the Indian lotus, is an important plant that has been incorporated into traditional herbal remedies along the years. Even today, lotus leaves are considered reservoirs for bioactive compounds that can be used as nutritional supplements to treat various human diseases. However, despite the wide ranging biological activities of lotus polysaccharides, limited information is available regarding the anti-osteoporotic effects of these substances. The aim of this study was to investigate the beneficial effects of pectinase-assisted extractable polysaccharides from lotus leaves (LLEP) on estrogen deficiency-induced bone loss and osteoclast differentiation in bone marrow-derived macrophages. We found that LLEP markedly inhibited receptor activator of the nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation in a dose-dependent manner. It also revoked RANKL-induced activation of osteoclastogenic signals such as the expression of key transcription factors (i.e., c-Fos and nuclear factor of activated T cells cytoplasmic 1), resulting in a decrement in osteoclast-specific marker gene expressions. Microcomputed tomography and morphometric analysis revealed that a four-week oral administration of LLEP notably decreased trabecular bone loss. Taken together, our results suggest that LLEP can mitigate estrogen deficiency-induced bone loss by suppressing osteoclastogenesis, which makes it an excellent candidate for combating osteoporosis.


Subject(s)
Lotus/chemistry , Osteoclasts/drug effects , Osteogenesis/drug effects , Osteoporosis/drug therapy , Plant Leaves/chemistry , Polysaccharides/pharmacology , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Bone Resorption/drug therapy , Bone Resorption/metabolism , Cell Differentiation/drug effects , Female , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Osteoporosis/metabolism , RANK Ligand/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism
13.
Int J Biol Macromol ; 153: 169-179, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32105695

ABSTRACT

Lotus leaf polysaccharides were extracted by enzyme-assisted extraction using α-amylase (LLEP-A), cellulose (LLEP-C), pectinase (LLEP-P) or protease (LLEP-PR). Their physicochemical properties and immunostimulatory activities were compared with those of hot-water extracted polysaccharides (LLWP). HPAEC-PDA and HPSEC-RI profiles indicated that variations in their molecular weight patterns and chemical compositions. Moreover, their effects on proliferation, phagocytic activity, and cytokine production in macrophages could be ordered as LLEP-P > LLEP-C > LLEP-A > LLWP > LLEP-PR, suggesting that LLEP-P by pectinase-assisted extraction was the most potent enhancer of macrophage activation. LLEP-P was further purified by gel filtration, and the main fraction (LLEP-P-І) was obtained to elucidate the structural and functional properties. LLEP-P-І (14.63 × 103 g/mol) mainly consisted of rhamnose, arabinose, galactose, and galacturonic acid at molar percentages of 15.5:15.8:20.1:32.8. FT-IR spectra indicated the predominant acidic and esterified form, suggesting the pectic-like structure. Above all, LLEP-P-І exerted greater stimulation effects on NO and cytokines production and the phagocytic activity in macrophages. Transcriptome analysis also demonstrated that LLEP-P and LLEP-P-І could upregulate macrophage immune response genes, including cytokines, chemokines, and interferon via TLR and JAK-STAT signaling. Thus, these results suggest that pectinase application is most suitable to obtain immunostimulatory polysaccharides from lotus leaves.


Subject(s)
Adjuvants, Immunologic , Lotus/chemistry , Macrophages/immunology , Plant Leaves/chemistry , Polysaccharides , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/isolation & purification , Adjuvants, Immunologic/pharmacology , Animals , Carbohydrate Conformation , Cytokines/immunology , Macrophages/cytology , Mice , Nitric Oxide/immunology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , RAW 264.7 Cells
14.
Molecules ; 25(4)2020 Feb 16.
Article in English | MEDLINE | ID: mdl-32079067

ABSTRACT

Red ginseng has been reported to elicit various therapeutic effects relevant to cancer, diabetes, neurodegenerative diseases, and inflammatory diseases. However, the effect of red ginseng on exercise endurance and skeletal muscle function remains unclear. Herein, we sought to investigate whether red ginseng could affect exercise endurance and examined its molecular mechanism. Mice were fed with red ginseng extract (RG) and undertook swimming exercises to determine the time to exhaustion. Animals fed with RG had significantly longer swimming endurance. RG treatment was also observed to enhance ATP production levels in myoblasts. RG increased mRNA expressions of mitochondrial biogenesis regulators, NRF-1, TFAM, and PGC-1α, which was accompanied by an elevation in mitochondrial DNA, suggesting an enhancement in mitochondrial energy-generating capacity. Importantly, RG treatment induced phosphorylation of p38 and AMPK and upregulated PGC1α expression in both myoblasts and in vivo muscle tissue. In addition, RG treatment also stimulated C2C12 myogenic differentiation. Our findings show that red ginseng improves exercise endurance, suggesting that it may have applications in supporting skeletal muscle function and exercise performance.


Subject(s)
Mitochondria/drug effects , Muscle, Skeletal/drug effects , Myoblasts/drug effects , Panax/chemistry , Physical Endurance/drug effects , Plant Extracts/pharmacology , Adenosine Triphosphate/biosynthesis , Animals , Cell Differentiation/drug effects , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation/drug effects , High Mobility Group Proteins/genetics , High Mobility Group Proteins/metabolism , Mice , Mice, Inbred ICR , Mitochondria/metabolism , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Nuclear Respiratory Factor 1/genetics , Nuclear Respiratory Factor 1/metabolism , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Physical Conditioning, Animal , Physical Endurance/physiology , Plant Extracts/isolation & purification , Swimming/physiology , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
15.
Int J Biol Macromol ; 147: 954-964, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31730956

ABSTRACT

Botanical polysaccharides have been widely known to possess immunological activity. The objective of this study was to investigate the molecular mechanisms underlying the immunostimulatory properties of polysaccharides isolated from barley leaf (Hordeum vulgare L.) (BLE0) in splenocytes and cyclophosphamide (CYP)-induced immunosuppressed mice. BLE0 showed cell proliferative activity and markedly increased the secretion of both Th1-cytokines (IFN-γ and IL-2) and Th2-cytokines (IL-4 and IL-10) in CD3/CD28-activated splenocytes. Molecular data revealed that BLE0 up-regulated the expression of T-bet with enhanced phosphorylation of Janus kinase (JAK)-signal transducer and activator of transcription (STAT) 1 signaling pathway. BLE0 also increase the phosphorylation of GATA3 via toll-like receptor (TLR) 2-mediated signaling pathway with nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP-1) activation. Oral administration of BLE0 effectively improved CYP-induced decrease of body weight, splenocyte proliferation, and natural killer (NK) cell cytotoxic activity and significantly increased Th1 and Th2 cytokines, T-bet, and GATA3 mRNA expression. Dietary intake of BLE0 improves the immunological manifestations by stimulating both Th1 and Th2 responses via JAK/STAT1/T-bet and TLR2/GATA3, respectively.


Subject(s)
Adjuvants, Immunologic , Cyclophosphamide/pharmacology , Hordeum/chemistry , Immunosuppression Therapy , Plant Leaves/chemistry , Polysaccharides , Spleen/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Animals , Male , Mice , Mice, Inbred ICR , Polysaccharides/chemistry , Polysaccharides/pharmacology
16.
JCI Insight ; 4(5)2019 03 07.
Article in English | MEDLINE | ID: mdl-30676326

ABSTRACT

The lymphatic system plays crucial roles in tissue homeostasis, lipid absorption, and immune cell trafficking. Although lymphatic valves ensure unidirectional lymph flows, the flow itself controls lymphatic valve formation. Here, we demonstrate that a mechanically activated ion channel Piezo1 senses oscillating shear stress (OSS) and incorporates the signal into the genetic program controlling lymphatic valve development and maintenance. Time-controlled deletion of Piezo1 using a pan-endothelial Cre driver (Cdh5[PAC]-CreERT2) or lymphatic-specific Cre driver (Prox1-CreERT2) equally inhibited lymphatic valve formation in newborn mice. Furthermore, Piezo1 deletion in adult lymphatics caused substantial lymphatic valve degeneration. Piezo1 knockdown in cultured lymphatic endothelial cells (LECs) largely abrogated the OSS-induced upregulation of the lymphatic valve signature genes. Conversely, ectopic Piezo1 overexpression upregulated the lymphatic valve genes in the absence of OSS. Remarkably, activation of Piezo1 using chemical agonist Yoda1 not only accelerated lymphatic valve formation in animals, but also triggered upregulation of some lymphatic valve genes in cultured LECs without exposure to OSS. In summary, our studies together demonstrate that Piezo1 is the force sensor in the mechanotransduction pathway controlling lymphatic valve development and maintenance, and Piezo1 activation is a potentially novel therapeutic strategy for congenital and surgery-associated lymphedema.


Subject(s)
Ion Channels/metabolism , Lymphangiogenesis/genetics , Lymphangiogenesis/physiology , Lymphatic Vessels/metabolism , Transcriptome , Animals , Antigens, CD , Cadherins , Endothelial Cells/metabolism , Female , Gene Expression Regulation , Humans , Ion Channels/genetics , Lymphatic Vessels/pathology , Mechanotransduction, Cellular/physiology , Mice , Mice, Knockout , Models, Animal , Stress, Mechanical , Up-Regulation
17.
Int J Biol Macromol ; 123: 314-321, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30439432

ABSTRACT

Potent anti-osteoporotic drugs have been developed over the past decades; however, the substantial need for treatments that can effectively and safely manage osteoporosis remains unmet. Barley leaf-derived products are one of best functional foods that can be used as nutritional supplements and detoxifiers in humans and are beneficial in improving bone disease. However, little information is available regarding the anti-osteoporotic effects of polysaccharides as the main component of barley leaf. This study aimed to clarify the beneficial effects of barley leaf (BLE0) polysaccharides on bone loss in ovariectomized mice and osteoclast differentiation in bone marrow-derived macrophages. BLE0 remarkably inhibited receptor activator of the nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation in a dose-dependent manner. It also blocked RANKL-induced activation of osteoclastogenic signals including ERK and p38 and the expression of nuclear factor of activated T cells cytoplasmic 1, as a master regulator of osteoclast differentiation, leading to decreased expression of osteoclast-specific marker genes such as Atp6v0d2, DC-STAMP and cathepsin K. Micro-computed tomography revealed that a seven-week oral administration of BLE0 dramatically improved ovariectomy-induced trabecular bone loss. Anti-osteoporotic effects were confirmed using morphometric analysis. Taken together, BLE0 is a bioactive polysaccharide; it mitigates estrogen deficiency-induced bone loss by directly inhibiting osteoclast differentiation.


Subject(s)
Bone Resorption/drug therapy , Cell Differentiation/drug effects , Osteoporosis/drug therapy , Polysaccharides/chemistry , Animals , Bone Marrow Cells/drug effects , Bone Resorption/complications , Bone Resorption/pathology , Hordeum/chemistry , Humans , Macrophages/drug effects , Mice , Osteoblasts/drug effects , Osteoclasts/drug effects , Osteogenesis/drug effects , Osteoporosis/complications , Osteoporosis/pathology , Ovariectomy , Plant Leaves/chemistry , Polysaccharides/administration & dosage
18.
Int J Mol Sci ; 19(9)2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30235870

ABSTRACT

The edible and medicinal perennial herb Aster scaber is known to have anticancer, antioxidant, and immunomodulatory properties. However, the biological effects of its polysaccharides are not well understood. Here, we aimed to extract novel polysaccharides with enhanced biological properties from Aster scaber using enzyme-assisted methods. Amylase, cellulase, and pectinase were used to extract enzyme-assisted polysaccharide (ASEP)-A, ASEP-C, and ASEP-P, respectively. The yields, physicochemical properties, and immunostimulatory activities of the polysaccharides were investigated and compared with those of hot water extracted polysaccharide (ASWP). The highest yield (3.8%) was achieved for ASEP-P extracted using pectinase digestion. Fourier-transform infrared spectroscopy (FT-IR) and chemical composition analysis revealed that ASWP and three ASEPs were typical acidic heteropolysaccharides, mainly comprising rhamnose, arabinose, galactose, glucose, and galacturonic acid. Immunostimulatory activity assays on RAW264.7 macrophages showed ASEP-P to have the greatest immunostimulatory potential in terms of nitric oxide (NO) and cytokine productions and phagocytic activity. ASEP-P administration improved immune-enhancing effects in normal mice by improving the spleen index and splenic lymphocyte proliferation, and in immunosuppressed mice by modulating lymphocyte proliferation, natural killer (NK) cell activity, and leukocyte counts. The ASEP-P derived from pectinase hydrolysate of Aster scaber demonstrated efficacious immunostimulatory properties and has potential applications as an immune stimulator.


Subject(s)
Adjuvants, Immunologic/chemistry , Anti-Infective Agents/chemistry , Aster Plant/chemistry , Plant Extracts/chemistry , Polysaccharides/chemistry , Adjuvants, Immunologic/pharmacology , Animals , Anti-Infective Agents/pharmacology , Cell Line , Cells, Cultured , Lymphocytes/drug effects , Male , Mice , Phagocytosis/drug effects , Plant Extracts/pharmacology , Polygalacturonase/chemistry , Polysaccharides/pharmacology , Sugars/analysis
19.
Int J Mol Sci ; 19(9)2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30149526

ABSTRACT

Opuntia humifusa is a type of cactus whose fruits have been used in folk medicine for the treatment of several diseases. In the present study, we aimed to determine whether O. humifusa fruit water extract (OHE) has inhibitory effects against solar ultraviolet (sUV)-induced matrix metalloproteinase-1 (MMP-1) expression. In ex vivo human skin, we found that OHE suppressed sUV radiation-induced MMP-1 expression. The inhibitory effect of OHE was confirmed in human dermal fibroblasts. OHE treatment reduced sUV-induced MMP-1 expression by suppressing reactive oxygen species (ROS) generation and phosphorylation of c-Jun, a component of transcription factor activator protein 1 (AP-1). On the other hand, OHE recovered the tissue inhibitor of matrix metalloproteinase 1 (TIMP-1) and type 1 collagen production attenuated by sUV. As upstream signaling pathways for AP-1, MKK4-JNK, MEK-ERK, and MKK3/6-p38 phosphorylation were downregulated by OHE treatment. In addition, OHE exhibited DPPH radical scavenging activity. These findings demonstrate that OHE has a preventive effect against sUV-induced skin damage via suppression of pathways triggered by ROS.


Subject(s)
Fruit/chemistry , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Matrix Metalloproteinase 1/genetics , Opuntia/chemistry , Plant Extracts/pharmacology , Sunlight , Ultraviolet Rays , Biomarkers , Cell Survival/drug effects , Cell Survival/radiation effects , Chromatography, High Pressure Liquid , Collagen Type I/genetics , Collagen Type I/metabolism , Humans , MAP Kinase Signaling System/drug effects , Matrix Metalloproteinase Inhibitors/chemistry , Matrix Metalloproteinase Inhibitors/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Reactive Oxygen Species/metabolism , Skin/drug effects , Skin/metabolism , Skin/radiation effects , Spectrometry, Mass, Electrospray Ionization , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism
20.
Nutrients ; 10(7)2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30011853

ABSTRACT

Persimmon (Diospyros kaki L.f.) leaves have traditionally been used as a phytomedicine, in health beverages to treat cardiovascular and respiratory disease and to promote maternal health in East Asia. In particular, polysaccharides from persimmon are known to have anti-coagulant, anti-oxidant, and immune-stimulatory activities. However, their beneficial effects against osteoporosis have not been reported. In the present study, we investigated the anti-osteoporotic effects of polysaccharides from persimmon leaves (PLE0) using an in vivo model of ovariectomy (OVX)-induced bone loss and an in vitro system of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. In the OVX mouse model, PLE0 remarkably improved OVX-induced trabecular bone loss by suppressing osteoclast activity. In primary bone marrow-derived macrophages (BMMs), PLE0 dose-dependently inhibited osteoclast differentiation. In addition, PLE0 down-regulated RANKL-induced activation of mitogen-activated protein kinases (MAPKs) such as p38, ERK, and JNK resulting in suppression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1) expression. Our results indicate that PLE0 has anti-osteoporotic effects in OVX-induced bone loss via inhibition of osteoclast differentiation. Taken together, PLE0 from persimmon may prevent postmenopausal bone loss and osteoporotic bone fragility.


Subject(s)
Bone Density Conservation Agents/pharmacology , Diospyros , Osteoclasts/drug effects , Osteogenesis/drug effects , Osteoporosis, Postmenopausal/prevention & control , Plant Extracts/pharmacology , Plant Leaves , Polysaccharides/pharmacology , Animals , Bone Density Conservation Agents/isolation & purification , Cell Differentiation/drug effects , Cells, Cultured , Diospyros/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Humans , Mice, Inbred ICR , Mitogen-Activated Protein Kinases/metabolism , NFATC Transcription Factors/metabolism , Osteoclasts/metabolism , Osteoclasts/pathology , Osteoporosis, Postmenopausal/metabolism , Osteoporosis, Postmenopausal/pathology , Osteoporosis, Postmenopausal/physiopathology , Ovariectomy , Phytotherapy , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Plants, Medicinal , Polysaccharides/isolation & purification , Proto-Oncogene Proteins c-fos/metabolism , RANK Ligand/metabolism , Signal Transduction/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...