Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(4): e2117503120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36649401

ABSTRACT

Resting skeletal muscle generates heat for endothermy in mammals but not amphibians, while both use the same Ca2+-handling proteins and membrane structures to conduct excitation-contraction coupling apart from having different ryanodine receptor (RyR) isoforms for Ca2+ release. The sarcoplasmic reticulum (SR) generates heat following Adenosine triphosphate (ATP) hydrolysis at the Ca2+ pump, which is amplified by increasing RyR1 Ca2+ leak in mammals, subsequently increasing cytoplasmic [Ca2+] ([Ca2+]cyto). For thermogenesis to be functional, rising [Ca2+]cyto must not interfere with cytoplasmic effectors of the sympathetic nervous system (SNS) that likely increase RyR1 Ca2+ leak; nor should it compromise the muscle remaining relaxed. To achieve this, Ca2+ activated, regenerative Ca2+ release that is robust in lower vertebrates needs to be suppressed in mammals. However, it has not been clear whether: i) the RyR1 can be opened by local increases in [Ca2+]cyto; and ii) downstream effectors of the SNS increase RyR Ca2+ leak and subsequently, heat generation. By positioning amphibian and malignant hyperthermia-susceptible human-skinned muscle fibers perpendicularly, we induced abrupt rises in [Ca2+]cyto under identical conditions optimized for activating regenerative Ca2+ release as Ca2+ waves passed through the junction of fibers. Only mammalian fibers showed resistance to rising [Ca2+]cyto, resulting in increased SR Ca2+ load and leak. Fiber heat output was increased by cyclic adenosine monophosphate (cAMP)-induced RyR1 phosphorylation at Ser2844 and Ca2+ leak, indicating likely SNS regulation of thermogenesis. Thermogenesis occurred despite the absence of SR Ca2+ pump regulator sarcolipin. Thus, evolutionary isolation of RyR1 provided increased dynamic range for thermogenesis with sensitivity to cAMP, supporting endothermy.


Subject(s)
Muscle, Skeletal , Ryanodine Receptor Calcium Release Channel , Animals , Humans , Calcium/metabolism , Muscle, Skeletal/metabolism , Protein Isoforms/metabolism , Ryanodine/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Thermogenesis , Amphibians
2.
Biochim Biophys Acta Mol Cell Res ; 1866(7): 1239-1248, 2019 07.
Article in English | MEDLINE | ID: mdl-30825472

ABSTRACT

Skeletal muscle fibres support store-operated Ca2+-entry (SOCE) across the t-tubular membrane upon exhaustive depletion of Ca2+ from the sarcoplasmic reticulum (SR). Recently we demonstrated the presence of a novel mode of SOCE activated under conditions of maintained [Ca2+]SR. This phasic SOCE manifested in a fast and transient manner in synchrony with excitation contraction (EC)-coupling mediated SR Ca2+-release (Communications Biology 1:31, doi: https://doi.org/10.1038/s42003-018-0033-7). Stromal interaction molecule 1 (STIM1) and calcium release-activated calcium channel 1 (ORAI1), positioned at the SR and t-system membranes, respectively, are the considered molecular correlate of SOCE. The evidence suggests that at the triads, where the terminal cisternae of the SR sandwich a t-tubule, STIM1 and ORAI1 proteins pre-position to allow for enhanced SOCE transduction. Here we show that phasic SOCE is not only shaped by global [Ca2+]SR but provide evidence for a local activation within nanodomains at the terminal cisternae of the SR. This feature may allow SOCE to modulate [Ca2+]SR during EC coupling. We define SOCE to occur on the same timescale as EC coupling and determine the temporal coherence of SOCE activation to SR Ca2+ release. We derive a delay of 0.3 ms reflecting diffusive Ca2+-equilibration at the luminal ryanodine receptor 1 (RyR1) channel mouth upon SR Ca2+-release. Numerical simulations of Ca2+-calsequestrin binding estimates a characteristic diffusion length and confines an upper limit for the spatial distance between STIM1 and RyR1. Experimental evidence for a 4- fold change in t-system Ca2+-permeability upon prolonged electrical stimulation in conjunction with numerical simulations of Ca2+-STIM1 binding suggests a Ca2+ dissociation constant of STIM1 below 0.35 mM. Our results show that phasic SOCE is intimately linked with RyR opening and closing, with only µs delays, because [Ca2+] in the terminal cisternae is just above the threshold for Ca2+ dissociation from STIM1 under physiological resting conditions. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Subject(s)
Calcium/metabolism , Excitation Contraction Coupling/physiology , Muscle, Skeletal/metabolism , ORAI1 Protein/metabolism , Sarcoplasmic Reticulum/metabolism , Stromal Interaction Molecule 1/metabolism , Animals , Male , Rats , Rats, Wistar
3.
Commun Biol ; 1: 31, 2018.
Article in English | MEDLINE | ID: mdl-30271917

ABSTRACT

Store-operated calcium (Ca2+) entry (SOCE) in skeletal muscle is rapidly activated across the tubular system during direct activation of Ca2+ release. The tubular system is the invagination of the plasma membrane that forms junctions with the sarcoplasmic reticulum (SR) where STIM1, Orai1 and ryanodine receptors are found. The physiological activation of SOCE in muscle is not defined, thus clouding its physiological role. Here we show that the magnitude of a phasic tubular system Ca2+ influx is dependent on SR Ca2+ depletion magnitude, and define this as SOCE. Consistent with SOCE, the influx was resistant to nifedipine and BayK8644, and silenced by inhibition of SR Ca2+ release during excitation. The SOCE transient was shaped by action potential frequency and SR Ca2+ pump activity. Our results show that SOCE in skeletal muscle acts as an immediate counter-flux to Ca2+ loss across the tubular system during excitation-contraction coupling.

4.
Proc Natl Acad Sci U S A ; 115(32): 8215-8220, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30038012

ABSTRACT

We used the nanometer-wide tubules of the transverse tubular (t)-system of human skeletal muscle fibers as sensitive sensors for the quantitative monitoring of the Ca2+-handling properties in the narrow junctional cytoplasmic space sandwiched between the tubular membrane and the sarcoplasmic reticulum cisternae in single muscle fibers. The t-system sealed with a Ca2+-sensitive dye trapped in it is sensitive to changes in ryanodine receptor (RyR) Ca2+ leak, the store operated calcium entry flux, plasma membrane Ca pump, and sodium-calcium exchanger activities, thus making the sealed t-system a nanodomain Ca2+ sensor of Ca2+ dynamics in the junctional space. The sensor was used to assess the basal Ca2+-handling properties of human muscle fibers obtained by needle biopsy from control subjects and from people with a malignant hyperthermia (MH) causative RyR variant. Using this approach we show that the muscle fibers from MH-susceptible individuals display leakier RyRs and a greater capacity to extrude Ca2+ across the t-system membrane compared with fibers from controls. This study provides a quantitative way to assess the effect of RyR variants on junctional membrane Ca2+ handling under defined ionic conditions.


Subject(s)
Calcium/metabolism , Intercellular Junctions/pathology , Malignant Hyperthermia/pathology , Ryanodine Receptor Calcium Release Channel/genetics , Sarcoplasmic Reticulum/pathology , Adult , Biopsy , Calcium/chemistry , Cations, Divalent/chemistry , Cations, Divalent/metabolism , Cell Membrane/metabolism , Cell Membrane/pathology , Female , Fluorescent Dyes/chemistry , Humans , Intercellular Junctions/metabolism , Male , Malignant Hyperthermia/genetics , Mutation , Nanostructures/chemistry , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Young Adult
5.
Proc Natl Acad Sci U S A ; 114(18): 4811-4815, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28373535

ABSTRACT

Malignant hyperthermia (MH) is a clinical syndrome of skeletal muscle that presents as a hypermetabolic response to volatile anesthetic gases, where susceptible persons may develop lethally high body temperatures. Genetic predisposition mainly arises from mutations on the skeletal muscle ryanodine receptor (RyR). Dantrolene is administered to alleviate MH symptoms, but its mechanism of action and its influence on the Ca2+ transients elicited by MH triggers are unknown. Here, we show that Ca2+ release in the absence of Mg2+ is unaffected by the presence of dantrolene but that dantrolene becomes increasingly effective as cytoplasmic-free [Mg2+] (free [Mg2+]cyto) passes mM levels. Furthermore, we found in human muscle susceptible to MH that dantrolene was ineffective at reducing halothane-induced repetitive Ca2+ waves in the presence of resting levels of free [Mg2+]cyto (1 mM). However, an increase of free [Mg2+]cyto to 1.5 mM could increase the period between Ca2+ waves. These results reconcile previous contradictory reports in muscle fibers and isolated RyRs, where Mg2+ is present or absent, respectively, and define the mechanism of action of dantrolene is to increase the Mg2+ affinity of the RyR (or "stabilize" the resting state of the channel) and suggest that the accumulation of the metabolite Mg2+ from MgATP hydrolysis is required to make dantrolene administration effective in arresting an MH episode.


Subject(s)
Calcium Signaling/drug effects , Dantrolene/pharmacology , Magnesium/pharmacology , Malignant Hyperthermia , Muscle, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Adult , Animals , Female , Halothane/pharmacology , Humans , Male , Malignant Hyperthermia/drug therapy , Malignant Hyperthermia/metabolism , Malignant Hyperthermia/pathology , Muscle, Skeletal/pathology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL