Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
mSystems ; : e0032124, 2024 May 14.
Article En | MEDLINE | ID: mdl-38742892

Ticks are increasingly important vectors of human and agricultural diseases. While many studies have focused on tick-borne bacteria, far less is known about tick-associated viruses and their roles in public health or tick physiology. To address this, we investigated patterns of bacterial and viral communities across two field populations of western black-legged ticks (Ixodes pacificus). Through metatranscriptomic analysis of 100 individual ticks, we quantified taxon prevalence, abundance, and co-occurrence with other members of the tick microbiome. In addition to commonly found tick-associated microbes, we assembled 11 novel RNA virus genomes from Rhabdoviridae, Chuviridae, Picornaviridae, Phenuiviridae, Reoviridae, Solemovidiae, Narnaviridae and two highly divergent RNA virus genomes lacking sequence similarity to any known viral families. We experimentally verified the presence of these in I. pacificus ticks across several life stages. We also unexpectedly identified numerous virus-like transcripts that are likely encoded by tick genomic DNA, and which are distinct from known endogenous viral element-mediated immunity pathways in invertebrates. Taken together, our work reveals that I. pacificus ticks carry a greater diversity of viruses than previously appreciated, in some cases resulting in evolutionarily acquired virus-like transcripts. Our findings highlight how pervasive and intimate tick-virus interactions are, with major implications for both the fundamental biology and vectorial capacity of I. pacificus ticks. IMPORTANCE: Ticks are increasingly important vectors of disease, particularly in the United States where expanding tick ranges and intrusion into previously wild areas has resulted in increasing human exposure to ticks. Emerging human pathogens have been identified in ticks at an increasing rate, and yet little is known about the full community of microbes circulating in various tick species, a crucial first step to understanding how they interact with each and their tick host, as well as their ability to cause disease in humans. We investigated the bacterial and viral communities of the Western blacklegged tick in California and found 11 previously uncharacterized viruses circulating in this population.

2.
bioRxiv ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38746193

Innate immunity, the first line of defense against pathogens, relies on efficient elimination of invading agents by phagocytes. In the co-evolution of host and pathogen, pathogens developed mechanisms to dampen and evade phagocytic clearance. Here, we report that bacterial pathogens can evade clearance by macrophages through mimicry at the mammalian anti-phagocytic "don't eat me" signaling axis between CD47 (ligand) and SIRPα (receptor). We identified a protein, P66, on the surface of Borrelia burgdorferi that, like CD47, is necessary and sufficient to bind the macrophage receptor SIRPα. Expression of the gene encoding the protein is required for bacteria to bind SIRPα or a high-affinity CD47 reagent. Genetic deletion of p66 increases phagocytosis by macrophages. Blockade of P66 during infection promotes clearance of the bacteria. This study demonstrates that mimicry of the mammalian anti-phagocytic protein CD47 by B. burgdorferi inhibits macrophage-mediated bacterial clearance. Such a mechanism has broad implications for understanding of host-pathogen interactions and expands the function of the established innate immune checkpoint receptor SIRPα. Moreover, this report reveals P66 as a novel therapeutic target in the treatment of Lyme Disease.

3.
Elife ; 122023 Jul 14.
Article En | MEDLINE | ID: mdl-37449477

Borrelia burgdorferi (Bb), the causative agent of Lyme disease, adapts to vastly different environments as it cycles between tick vector and vertebrate host. During a tick bloodmeal, Bb alters its gene expression to prepare for vertebrate infection; however, the full range of transcriptional changes that occur over several days inside of the tick are technically challenging to capture. We developed an experimental approach to enrich Bb cells to longitudinally define their global transcriptomic landscape inside nymphal Ixodes scapularis ticks during a transmitting bloodmeal. We identified 192 Bb genes that substantially change expression over the course of the bloodmeal from 1 to 4 days after host attachment. The majority of upregulated genes encode proteins found at the cell envelope or proteins of unknown function, including 45 outer surface lipoproteins embedded in the unusual protein-rich coat of Bb. As these proteins may facilitate Bb interactions with the host, we utilized mass spectrometry to identify candidate tick proteins that physically associate with Bb. The Bb enrichment methodology along with the ex vivo Bb transcriptomes and candidate tick interacting proteins presented here provide a resource to facilitate investigations into key determinants of Bb priming and transmission during the tick stage of its unique transmission cycle.


Borrelia burgdorferi , Ixodes , Lyme Disease , Animals , Borrelia burgdorferi/genetics , Transcriptome , Arthropod Proteins
4.
PLoS Pathog ; 19(6): e1011454, 2023 06.
Article En | MEDLINE | ID: mdl-37363922

Gram-negative bacteria can antagonize neighboring microbes using a type VI secretion system (T6SS) to deliver toxins that target different essential cellular features. Despite the conserved nature of these targets, T6SS potency can vary across recipient species. To understand the functional basis of intrinsic T6SS susceptibility, we screened for essential Escherichia coli (Eco) genes that affect its survival when antagonized by a cell wall-degrading T6SS toxin from Pseudomonas aeruginosa, Tae1. We revealed genes associated with both the cell wall and a separate layer of the cell envelope, lipopolysaccharide, that modulate Tae1 toxicity in vivo. Disruption of genes in early lipopolysaccharide biosynthesis provided Eco with novel resistance to Tae1, despite significant cell wall degradation. These data suggest that Tae1 toxicity is determined not only by direct substrate damage, but also by indirect cell envelope homeostasis activities. We also found that Tae1-resistant Eco exhibited reduced cell wall synthesis and overall slowed growth, suggesting that reactive cell envelope maintenance pathways could promote, not prevent, self-lysis. Together, our study reveals the complex functional underpinnings of susceptibility to Tae1 and T6SS which regulate the impact of toxin-substrate interactions in vivo.


Lipopolysaccharides , Type VI Secretion Systems , Lipopolysaccharides/metabolism , Bacterial Proteins/metabolism , Type VI Secretion Systems/metabolism , Escherichia coli/metabolism , Cell Wall/metabolism , Pseudomonas aeruginosa/metabolism
5.
bioRxiv ; 2023 May 02.
Article En | MEDLINE | ID: mdl-36747731

Gram-negative bacteria can antagonize neighboring microbes using a type VI secretion system (T6SS) to deliver toxins that target different essential cellular features. Despite the conserved nature of these targets, T6SS potency can vary across recipient species. To understand the molecular basis of intrinsic T6SS susceptibility, we screened for essential Escherichia coli genes that affect its survival when antagonized by a cell wall-degrading T6SS toxin from Pseudomonas aeruginosa , Tae1. We revealed genes associated with both the cell wall and a separate layer of the cell envelope, surface lipopolysaccharide, that modulate Tae1 toxicity in vivo . Disruption of lipopolysaccharide synthesis provided Escherichia coli (Eco) with novel resistance to Tae1, despite significant cell wall degradation. These data suggest that Tae1 toxicity is determined not only by direct substrate damage, but also by indirect cell envelope homeostasis activities. We also found that Tae1-resistant Eco exhibited reduced cell wall synthesis and overall slowed growth, suggesting that reactive cell envelope maintenance pathways could promote, not prevent, self-lysis. Together, our study highlights the consequences of co-regulating essential pathways on recipient fitness during interbacterial competition, and how antibacterial toxins leverage cellular vulnerabilities that are both direct and indirect to their specific targets in vivo .

6.
Elife ; 112022 06 28.
Article En | MEDLINE | ID: mdl-35762582

Members of the bacterial T6SS amidase effector (Tae) superfamily of toxins are delivered between competing bacteria to degrade cell wall peptidoglycan. Although Taes share a common substrate, they exhibit distinct antimicrobial potency across different competitor species. To investigate the molecular basis governing these differences, we quantitatively defined the functional determinants of Tae1 from Pseudomonas aeruginosa PAO1 using a combination of nuclear magnetic resonance and a high-throughput in vivo genetic approach called deep mutational scanning (DMS). As expected, combined analyses confirmed the role of critical residues near the Tae1 catalytic center. Unexpectedly, DMS revealed substantial contributions to enzymatic activity from a much larger, ring-like functional hot spot extending around the entire circumference of the enzyme. Comparative DMS across distinct growth conditions highlighted how functional contribution of different surfaces is highly context-dependent, varying alongside composition of targeted cell walls. These observations suggest that Tae1 engages with the intact cell wall network through a more distributed three-dimensional interaction interface than previously appreciated, providing an explanation for observed differences in antimicrobial potency across divergent Gram-negative competitors. Further binding studies of several Tae1 variants with their cognate immunity protein demonstrate that requirements to maintain protection from Tae activity may be a significant constraint on the mutational landscape of tae1 toxicity in the wild. In total, our work reveals that Tae diversification has likely been shaped by multiple independent pressures to maintain interactions with binding partners that vary across bacterial species and conditions.


Amidohydrolases , Peptidoglycan , Amidohydrolases/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Cell Wall/metabolism , Peptidoglycan/metabolism , Pseudomonas aeruginosa/metabolism
7.
Mol Ecol ; 31(9): 2698-2711, 2022 05.
Article En | MEDLINE | ID: mdl-35231145

A vector's susceptibility and ability to transmit a pathogen-termed vector competency-determines disease outcomes, yet the ecological factors influencing tick vector competency remain largely unknown. Ixodes pacificus, the tick vector of Borrelia burgdorferi (Bb) in the western U.S., feeds on rodents, birds, and lizards. Rodents and birds are reservoirs for Bb and infect juvenile ticks, while lizards are refractory to Bb and cannot infect feeding ticks. Additionally, the lizard bloodmeal contains borreliacidal properties, clearing previously infected feeding ticks of their Bb infection. Despite I. pacificus feeding on a range of hosts, it is undetermined how the host identity of the larval bloodmeal affects future nymphal vector competency. We experimentally evaluate the influence of larval host bloodmeal on Bb acquisition by nymphal I. pacificus. Larval I. pacificus were fed on either lizards or mice and after molting, nymphs were fed on Bb-infected mice. We found that lizard-fed larvae were significantly more likely to become infected with Bb during their next bloodmeal than mouse-fed larvae. We also conducted the first RNA-seq analysis on whole-bodied I. pacificus and found significant upregulation of tick antioxidants and antimicrobial peptides in the lizard-fed group. Our results indicate that the lizard bloodmeal significantly alters vector competency and gene regulation in ticks, highlighting the importance of host bloodmeal identity in vector-borne disease transmission and upends prior notions about the role of lizards in Lyme disease community ecology.


Ixodes , Lizards , Lyme Disease , Animals , Birds , Disease Vectors , Gene Expression , Ixodes/genetics , Larva/genetics , Lizards/genetics , Lyme Disease/genetics , Mice , Nymph/genetics , Rodentia
8.
mBio ; 13(1): e0272621, 2022 02 22.
Article En | MEDLINE | ID: mdl-35073755

Ceragenins are a family of synthetic amphipathic molecules designed to mimic the properties of naturally occurring cationic antimicrobial peptides (CAMPs). Although ceragenins have potent antimicrobial activity, whether their mode of action is similar to that of CAMPs has remained elusive. Here, we reported the results of a comparative study of the bacterial responses to two well-studied CAMPs, LL37 and colistin, and two ceragenins with related structures, CSA13 and CSA131. Using transcriptomic and proteomic analyses, we found that Escherichia coli responded similarly to both CAMPs and ceragenins by inducing a Cpx envelope stress response. However, whereas E. coli exposed to CAMPs increased expression of genes involved in colanic acid biosynthesis, bacteria exposed to ceragenins specifically modulated functions related to phosphate transport, indicating distinct mechanisms of action between these two classes of molecules. Although traditional genetic approaches failed to identify genes that confer high-level resistance to ceragenins, using a Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) approach we identified E. coli essential genes that when knocked down modify sensitivity to these molecules. Comparison of the essential gene-antibiotic interactions for each of the CAMPs and ceragenins identified both overlapping and distinct dependencies for their antimicrobial activities. Overall, this study indicated that, while some bacterial responses to ceragenins overlap those induced by naturally occurring CAMPs, these synthetic molecules target the bacterial envelope using a distinctive mode of action. IMPORTANCE The development of novel antibiotics is essential because the current arsenal of antimicrobials will soon be ineffective due to the widespread occurrence of antibiotic resistance. The development of naturally occurring cationic antimicrobial peptides (CAMPs) for therapeutics to combat antibiotic resistance has been hampered by high production costs and protease sensitivity, among other factors. The ceragenins are a family of synthetic CAMP mimics that kill a broad spectrum of bacterial species but are less expensive to produce, resistant to proteolytic degradation, and seemingly resistant to the development of high-level resistance. Determining how ceragenins function may identify new essential biological pathways of bacteria that are less prone to the development of resistance and will further our understanding of the design principles for maximizing the effects of synthetic CAMPs.


Anti-Infective Agents , Antimicrobial Peptides , Escherichia coli , Proteomics , Bacteria , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Microbial Sensitivity Tests
9.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article En | MEDLINE | ID: mdl-34903650

In mammals, cyclic dinucleotides (CDNs) bind and activate STING to initiate an antiviral type I interferon response. CDNs and STING originated in bacteria and are present in most animals. By contrast, interferons are believed to have emerged in vertebrates; thus, the function of CDN signaling in invertebrates is unclear. Here, we use a CDN, 2'3' cyclic guanosine monophosphate-adenosine monophosphate (2'3'-cGAMP), to activate immune responses in a model cnidarian invertebrate, the starlet sea anemone Nematostella vectensis Using RNA sequencing, we found that 2'3'-cGAMP induces robust transcription of both antiviral and antibacterial genes in N. vectensis Many of the antiviral genes induced by 2'3'-cGAMP are homologs of vertebrate interferon-stimulated genes, implying that the interferon response predates the evolution of interferons. Knockdown experiments identified a role for NF-κB in specifically inducing antibacterial genes downstream of 2'3'-cGAMP. Some of these putative antibacterial genes were also found to be induced during Pseudomonas aeruginosa infection. We characterized the protein product of one of the putative antibacterial genes, the N. vectensis homolog of Dae4, and found that it has conserved antibacterial activity. This work suggests that a broad antibacterial and antiviral transcriptional response is an evolutionarily ancestral output of 2'3'-cGAMP signaling in animals.


Anti-Bacterial Agents/immunology , Antiviral Agents/immunology , Nucleotides, Cyclic/immunology , Sea Anemones/immunology , Animals , Immunity, Innate/genetics , NF-kappa B/genetics , NF-kappa B/immunology , Pseudomonas Infections/genetics , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/physiology , Sea Anemones/genetics , Signal Transduction , Transcriptional Activation
10.
Cell ; 183(6): 1562-1571.e12, 2020 12 10.
Article En | MEDLINE | ID: mdl-33306955

Ticks transmit a diverse array of microbes to vertebrate hosts, including human pathogens, which has led to a human-centric focus in this vector system. Far less is known about pathogens of ticks themselves. Here, we discover that a toxin in blacklegged ticks (Ixodes scapularis) horizontally acquired from bacteria-called domesticated amidase effector 2 (dae2)-has evolved to kill mammalian skin microbes with remarkable efficiency. Secreted into the saliva and gut of ticks, Dae2 limits skin-associated staphylococci in ticks while feeding. In contrast, Dae2 has no intrinsic ability to kill Borrelia burgdorferi, the tick-borne Lyme disease bacterial pathogen. These findings suggest ticks resist their own pathogens while tolerating symbionts. Thus, just as tick symbionts can be pathogenic to humans, mammalian commensals can be harmful to ticks. Our study underscores how virulence is context-dependent and bolsters the idea that "pathogen" is a status and not an identity.


Bacteria/metabolism , Immunologic Factors/metabolism , Ixodes/physiology , Skin/microbiology , Symbiosis , Animals , Anti-Bacterial Agents/pharmacology , Biocatalysis , Cell Wall/metabolism , Feeding Behavior , Female , Gastrointestinal Tract/metabolism , Host-Pathogen Interactions , Mice , Models, Molecular , Peptidoglycan/metabolism , Phylogeny , Saliva/metabolism , Salivary Glands/metabolism , Staphylococcus epidermidis/physiology , Structural Homology, Protein , Substrate Specificity , Up-Regulation
11.
Cell ; 179(3): 584-586, 2019 10 17.
Article En | MEDLINE | ID: mdl-31626766

Studying endosymbionts gives us insight into early cellular mechanisms that led to the emergence of eukaryotic organelles. In this issue of Cell, Bublitz et al. (2019) report on how a nested bacterial endosymbiont of mealybugs builds its cell wall peptidoglycan through a biosynthetic pathway that is dependent on transported host enzymes.


Peptidoglycan , Symbiosis , Animals , Cell Wall , Insecta , Phylogeny
12.
Mol Microbiol ; 111(4): 995-1008, 2019 04.
Article En | MEDLINE | ID: mdl-30614079

The diversity of cell shapes across the bacterial kingdom reflects evolutionary pressures that have produced physiologically important morphologies. While efforts have been made to understand the regulation of some prototypical cell morphologies such as that of rod-shaped Escherichia coli, little is known about most cell shapes. For Caulobacter crescentus, polar stalk synthesis is tied to its dimorphic life cycle, and stalk elongation is regulated by phosphate availability. Based on the previous observation that C. crescentus stalks are lysozyme-resistant, we compared the composition of the peptidoglycan cell wall of stalks and cell bodies and identified key differences in peptidoglycan crosslinking. Cell body peptidoglycan contained primarily DD-crosslinks between meso-diaminopimelic acid and D-alanine residues, whereas stalk peptidoglycan had more LD-transpeptidation (meso-diaminopimelic acid-meso-diaminopimelic acid), mediated by LdtD. We determined that ldtD is dispensable for stalk elongation; rather, stalk LD-transpeptidation reflects an aging process associated with low peptidoglycan turnover in the stalk. We also found that lysozyme resistance is a structural consequence of LD-crosslinking. Despite no obvious selection pressure for LD-crosslinking or lysozyme resistance in C. crescentus, the correlation between these two properties was maintained in other organisms, suggesting that DAP-DAP crosslinking may be a general mechanism for regulating bacterial sensitivity to lysozyme.


Bacterial Proteins/chemistry , Caulobacter crescentus/chemistry , Peptidoglycan/chemistry , Caulobacter crescentus/drug effects , Cell Wall/chemistry , Muramidase/pharmacology , Phosphates/metabolism
13.
ISME J ; 12(11): 2596-2607, 2018 11.
Article En | MEDLINE | ID: mdl-29946195

Hard ticks of the order Ixodidae serve as vectors for numerous human pathogens, including the causative agent of Lyme Disease Borrelia burgdorferi. Tick-associated microbes can influence pathogen colonization, offering the potential to inhibit disease transmission through engineering of the tick microbiota. Here, we investigate whether B. burgdorferi encounters abundant bacteria within the midgut of wild adult Ixodes scapularis, its primary vector. Through the use of controlled sequencing methods and confocal microscopy, we find that the majority of field-collected adult I. scapularis harbor limited internal microbial communities that are dominated by endosymbionts. A minority of I. scapularis ticks harbor abundant midgut bacteria and lack B. burgdorferi. We find that the lack of a stable resident midgut microbiota is not restricted to I. scapularis since extension of our studies to I. pacificus, Amblyomma maculatum, and Dermacentor spp showed similar patterns. Finally, bioinformatic examination of the B. burgdorferi genome revealed the absence of genes encoding known interbacterial interaction pathways, a feature unique to the Borrelia genus within the phylum Spirochaetes. Our results suggest that reduced selective pressure from limited microbial populations within ticks may have facilitated the evolutionary loss of genes encoding interbacterial competition pathways from Borrelia.


Gastrointestinal Microbiome , Ixodes/microbiology , Animals , Borrelia/genetics , Dermacentor/microbiology , Ixodidae/microbiology
14.
Nature ; 518(7537): 98-101, 2015 Feb 05.
Article En | MEDLINE | ID: mdl-25470067

Horizontal gene transfer allows organisms to rapidly acquire adaptive traits. Although documented instances of horizontal gene transfer from bacteria to eukaryotes remain rare, bacteria represent a rich source of new functions potentially available for co-option. One benefit that genes of bacterial origin could provide to eukaryotes is the capacity to produce antibacterials, which have evolved in prokaryotes as the result of eons of interbacterial competition. The type VI secretion amidase effector (Tae) proteins are potent bacteriocidal enzymes that degrade the cell wall when delivered into competing bacterial cells by the type VI secretion system. Here we show that tae genes have been transferred to eukaryotes on at least six occasions, and that the resulting domesticated amidase effector (dae) genes have been preserved for hundreds of millions of years through purifying selection. We show that the dae genes acquired eukaryotic secretion signals, are expressed within recipient organisms, and encode active antibacterial toxins that possess substrate specificity matching extant Tae proteins of the same lineage. Finally, we show that a dae gene in the deer tick Ixodes scapularis limits proliferation of Borrelia burgdorferi, the aetiologic agent of Lyme disease. Our work demonstrates that a family of horizontally acquired toxins honed to mediate interbacterial antagonism confers previously undescribed antibacterial capacity to eukaryotes. We speculate that the selective pressure imposed by competition between bacteria has produced a reservoir of genes encoding diverse antimicrobial functions that are tailored for co-option by eukaryotic innate immune systems.


Bacteria/enzymology , Bacteria/genetics , Bacterial Toxins/genetics , Eukaryota/genetics , Eukaryota/immunology , Gene Transfer, Horizontal/genetics , Genes, Bacterial/genetics , Immunity, Innate , Amidohydrolases/genetics , Amidohydrolases/metabolism , Animals , Bacteria/cytology , Bacteria/immunology , Bacterial Secretion Systems , Bacterial Toxins/metabolism , Borrelia burgdorferi/cytology , Borrelia burgdorferi/growth & development , Borrelia burgdorferi/immunology , Cell Wall/metabolism , Conserved Sequence/genetics , Eukaryota/metabolism , Immunity, Innate/genetics , Ixodes/genetics , Ixodes/immunology , Ixodes/metabolism , Ixodes/microbiology , Phylogeny , Substrate Specificity
15.
Cell Host Microbe ; 16(2): 227-236, 2014 Aug 13.
Article En | MEDLINE | ID: mdl-25070807

Bacteroidetes are a phylum of Gram-negative bacteria abundant in mammalian-associated polymicrobial communities, where they impact digestion, immunity, and resistance to infection. Despite the extensive competition at high cell density that occurs in these settings, cell contact-dependent mechanisms of interbacterial antagonism, such as the type VI secretion system (T6SS), have not been defined in this group of organisms. Herein we report the bioinformatic and functional characterization of a T6SS-like pathway in diverse Bacteroidetes. Using prominent human gut commensal and soil-associated species, we demonstrate that these systems localize dynamically within the cell, export antibacterial proteins, and target competitor bacteria. The Bacteroidetes system is a distinct pathway with marked differences in gene content and high evolutionary divergence from the canonical T6S pathway. Our findings offer a potential molecular explanation for the abundance of Bacteroidetes in polymicrobial environments, the observed stability of Bacteroidetes in healthy humans, and the barrier presented by the microbiota against pathogens.


Antibiosis , Bacterial Secretion Systems , Flavobacterium/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Genes, Bacterial , Multigene Family , Phylogeny
16.
J Biol Chem ; 288(37): 26616-24, 2013 Sep 13.
Article En | MEDLINE | ID: mdl-23878199

Bacteria employ type VI secretion systems (T6SSs) to facilitate interactions with prokaryotic and eukaryotic cells. Despite the widespread identification of T6SSs among Gram-negative bacteria, the number of experimentally validated substrate effector proteins mediating these interactions remains small. Here, employing an informatics approach, we define novel families of T6S peptidoglycan glycoside hydrolase effectors. Consistent with the known intercellular self-intoxication exhibited by the T6S pathway, we observe that each effector gene is located adjacent to a hypothetical open reading frame encoding a putative periplasmically localized immunity determinant. To validate our sequence-based approach, we functionally investigate a representative family member from the soil-dwelling bacterium Pseudomonas protegens. We demonstrate that this protein is secreted in a T6SS-dependent manner and that it confers a fitness advantage in growth competition assays with Pseudomonas putida. In addition, we determined the 1.4 Å x-ray crystal structure of this effector in complex with its cognate immunity protein. The structure reveals the effector shares highest overall structural similarity to a glycoside hydrolase family associated with peptidoglycan N-acetylglucosaminidase activity, suggesting that T6S peptidoglycan glycoside hydrolase effector families may comprise significant enzymatic diversity. Our structural analyses also demonstrate that self-intoxication is prevented by the immunity protein through direct occlusion of the effector active site. This work significantly expands our current understanding of T6S effector diversity.


Bacterial Secretion Systems/physiology , N-Acetylmuramoyl-L-alanine Amidase/chemistry , Calorimetry , Catalytic Domain , Computational Biology , Crystallography, X-Ray , Escherichia coli/metabolism , Microscopy, Phase-Contrast , Muramidase/chemistry , Peptidoglycan/chemistry , Protein Conformation , Protein Folding , Pseudomonas/metabolism , Pseudomonas putida/metabolism
17.
Elife ; 2: e00327, 2013 Mar 05.
Article En | MEDLINE | ID: mdl-23471103

Human positive transcription elongation factor b (P-TEFb) phosphorylates RNA polymerase II and regulatory proteins to trigger elongation of many gene transcripts. The HIV-1 Tat protein selectively recruits P-TEFb as part of a super elongation complex (SEC) organized on a flexible AFF1 or AFF4 scaffold. To understand this specificity and determine if scaffold binding alters P-TEFb conformation, we determined the structure of a tripartite complex containing the recognition regions of P-TEFb and AFF4. AFF4 meanders over the surface of the P-TEFb cyclin T1 (CycT1) subunit but makes no stable contacts with the CDK9 kinase subunit. Interface mutations reduced CycT1 binding and AFF4-dependent transcription. AFF4 is positioned to make unexpected direct contacts with HIV Tat, and Tat enhances P-TEFb affinity for AFF4. These studies define the mechanism of scaffold recognition by P-TEFb and reveal an unanticipated intersubunit pocket on the AFF4 SEC that potentially represents a target for therapeutic intervention against HIV/AIDS. DOI:http://dx.doi.org/10.7554/eLife.00327.001.


HIV-1/metabolism , Positive Transcriptional Elongation Factor B/metabolism , Repressor Proteins/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , Binding Sites , Crystallography, X-Ray , Cyclin T/metabolism , Cyclin-Dependent Kinase 9/metabolism , Gene Expression Regulation, Viral , HIV-1/genetics , HIV-1/growth & development , Humans , Models, Molecular , Positive Transcriptional Elongation Factor B/chemistry , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Recombinant Proteins/metabolism , Repressor Proteins/chemistry , Transcription Elongation, Genetic , Transcriptional Elongation Factors , Virus Replication , tat Gene Products, Human Immunodeficiency Virus/chemistry
18.
Proc Natl Acad Sci U S A ; 110(2): E123-31, 2013 Jan 08.
Article En | MEDLINE | ID: mdl-23251033

The HIV-1 Tat protein stimulates viral gene expression by recruiting human transcription elongation complexes containing P-TEFb, AFF4, ELL2, and ENL or AF9 to the viral promoter, but the molecular organization of these complexes remains unknown. To establish the overall architecture of the HIV-1 Tat elongation complex, we mapped the binding sites that mediate complex assembly in vitro and in vivo. The AFF4 protein emerges as the central scaffold that recruits other factors through direct interactions with short hydrophobic regions along its structurally disordered axis. Direct binding partners CycT1, ELL2, and ENL or AF9 act as bridging components that link this complex to two major elongation factors, P-TEFb and the PAF complex. The unique scaffolding properties of AFF4 allow dynamic and flexible assembly of multiple elongation factors and connect the components not only to each other but also to a larger network of transcriptional regulators.


Gene Expression Regulation, Viral/physiology , HIV-1 , Multiprotein Complexes/metabolism , Repressor Proteins/metabolism , Transcriptional Elongation Factors/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , Binding Sites/genetics , Blotting, Western , Circular Dichroism , Cyclin T/metabolism , Electrophoresis , Escherichia coli , HeLa Cells , Humans , Immunoprecipitation , Luciferases , Multiprotein Complexes/genetics , Positive Transcriptional Elongation Factor B/metabolism , Repressor Proteins/genetics , Transcriptional Elongation Factors/genetics
19.
Cell Rep ; 1(6): 656-64, 2012 Jun 28.
Article En | MEDLINE | ID: mdl-22813741

The target range of a bacterial secretion system can be defined by effector substrate specificity or by the efficacy of effector delivery. Here, we report the crystal structure of Tse1, a type VI secretion (T6S) bacteriolytic amidase effector from Pseudomonas aeruginosa. Consistent with its role as a toxin, Tse1 has a more accessible active site than related housekeeping enzymes. The activity of Tse1 against isolated peptidoglycan shows its capacity to act broadly against Gram-negative bacteria and even certain Gram-positive species. Studies with intact cells indicate that Gram-positive bacteria can remain vulnerable to Tse1 despite cell wall modifications. However, interbacterial competition studies demonstrate that Tse1-dependent lysis is restricted to Gram-negative targets. We propose that the previously observed specificity for T6S against Gram-negative bacteria is a consequence of high local effector concentration achieved by T6S-dependent targeting to its site of action rather than inherent effector substrate specificity.


Amidohydrolases/chemistry , Bacterial Proteins/chemistry , Bacterial Secretion Systems , Peptidoglycan/metabolism , Pseudomonas aeruginosa/enzymology , Amino Acid Sequence , Bacillus subtilis/metabolism , Catalytic Domain , Conserved Sequence , Crystallography, X-Ray , Disaccharides/chemistry , Mass Spectrometry , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary , Substrate Specificity
20.
PLoS Pathog ; 8(4): e1002613, 2012.
Article En | MEDLINE | ID: mdl-22511866

The type VI secretion system (T6SS) has emerged as an important mediator of interbacterial interactions. A T6SS from Pseudomonas aeruginosa targets at least three effector proteins, type VI secretion exported 1-3 (Tse1-3), to recipient Gram-negative cells. The Tse2 protein is a cytoplasmic effector that acts as a potent inhibitor of target cell proliferation, thus providing a pronounced fitness advantage for P. aeruginosa donor cells. P. aeruginosa utilizes a dedicated immunity protein, type VI secretion immunity 2 (Tsi2), to protect against endogenous and intercellularly-transferred Tse2. Here we show that Tse2 delivered by the T6SS efficiently induces quiescence, not death, within recipient cells. We demonstrate that despite direct interaction of Tsi2 and Tse2 in the cytoplasm, Tsi2 is dispensable for targeting the toxin to the secretory apparatus. To gain insights into the molecular basis of Tse2 immunity, we solved the 1.00 Å X-ray crystal structure of Tsi2. The structure shows that Tsi2 assembles as a dimer that does not resemble previously characterized immunity or antitoxin proteins. A genetic screen for Tsi2 mutants deficient in Tse2 interaction revealed an acidic patch distal to the Tsi2 homodimer interface that mediates toxin interaction and immunity. Consistent with this finding, we observed that destabilization of the Tsi2 dimer does not impact Tse2 interaction. The molecular insights into Tsi2 structure and function garnered from this study shed light on the mechanisms of T6 effector secretion, and indicate that the Tse2-Tsi2 effector-immunity pair has features distinguishing it from previously characterized toxin-immunity and toxin-antitoxin systems.


Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Secretion Systems/physiology , Protein Multimerization , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/metabolism , Bacterial Proteins/genetics , Crystallography, X-Ray , Protein Structure, Quaternary , Protein Structure, Tertiary , Pseudomonas aeruginosa/genetics
...