Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38893843

ABSTRACT

This paper explores the new potential strategy of using fine recycled aggregates (fRA) derived from waste 3D printed concrete (3DPC) as a substitute for cement in additive manufacturing. This study hypothesizes that fRA can optimize mixture design, reduce cement content, and contribute to sustainable construction practices. Experimental programs were conducted to evaluate the fresh and hardened properties, printability window, and buildability of 3DPC mixes containing fRA. Mixes with replacement rates of cement with fRA by 10 vol%, 20 vol%, 30 vol%, 40 vol%, and 50 vol% were produced. A comprehensive experimental protocol consisting of rheological studies (static and dynamic yield stress), dynamic elastic modulus determination (first 24 h of hydration), flexural and compressive strengths (2 d and 28 d), and an open porosity test was performed. The obtained results were verified by printing tests. In addition, an economic and environmental life cycle assessment (LCA) of the mixes was performed. The results indicate that up to 50 vol% cement replacement with fRA is feasible, albeit with some technical drawbacks. While fRA incorporation enhances sustainability by reducing CO2 emissions and material costs, it adversely affects the printability window, green strength, setting time, and mechanical properties, particularly in the initial curing stages. Therefore, with higher replacement rates (above 20 vol%), potential optimization efforts are needed to mitigate drawbacks such as reduced green strength and buildability. Notably, replacement rates of up to 20 vol% can be successfully used without compromising the overall material properties or altering the mixture design. The LCA analysis shows that reducing the cement content and increasing the fRA addition results in a significant reduction in mix cost (up to 24%) and a substantial decrease in equivalent CO2 emissions (up to 48%). In conclusion, this study underscores the potential of fRA as a sustainable alternative to cement in 3D printed concrete.

2.
Nanomaterials (Basel) ; 14(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38251133

ABSTRACT

This study presents a new approach towards the production of sol-gel silica-coated Bi2O3/Gd2O3 cement additives towards the improvement of early mechanical performance and radiation attenuation. Two types of silica coatings, which varied in synthesis method and morphology, were used to coat Bi2O3/Gd2O3 structures and evaluated as a cement filler in Portland cement pastes. Isothermal calorimetry studies and early strength evaluations confirmed that both proposed coating types can overcome retarded cement hydration process, attributed to Bi2O3 presence, resulting in improved one day compressive strength by 300% and 251% (depending on coating method) when compared to paste containing pristine Bi2O3 and Gd2O3 particles. Moreover, depending on the type of chosen coating type, various rheological performances of cement pastes can be achieved. Thanks to the proposed combination of materials, both gamma-rays and slow neutron attenuation in cement pastes can be simultaneously improved. The introduction of silica coating resulted in an increment of the gamma-ray and neutron shielding thanks to the increased probability of radiation interaction. Along with the positive early age effects of the synthesized structures, the 28 day mechanical performance of cement pastes was not suppressed, and was found to be comparable to that of the control specimen. As an outcome, silica-coated structures can be successfully used in radiation-shielding cement-based composites, e.g. with demanding early age performances.

3.
Nanomaterials (Basel) ; 13(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36839094

ABSTRACT

Due to global environmental concerns related to climate change, the need to improve the service life of structures and infrastructures is imminently urgent. Structural elements typically suffer service life reductions, leading to poor environmental sustainability and high maintenance costs. Graphene oxide nanosheets (GONSs) effectively dispersed in a cement matrix can promote hydration, refine the microstructure and improve interfacial bonding, leading to enhanced building materials' performance, including mechanical strength and transport properties. Cement-based nanocomposites engineered with GONSs were obtained using two commercial nanofillers, a GO water suspension and a free-flowing GO nanopowder, characterized by fully comparable morphology, size and aspect ratio and different oxidation degrees (i.e., oxygen-to-carbon molar ratio), 0.55 and 0.45, respectively. The dosage of the 2D-nanofiller ranged between 0.01% and 0.2% by weight of cement. The electrical and thermal properties were assessed through electrochemical impedance spectroscopy (EIS) and a heat flow meter, respectively. The results were discussed and linked to micrometric porosity investigated by micro-computed tomography (µ-CT) and transport properties as determined by initial surface absorption test (ISAT), boil-water saturation method (BWS) and chloride ion penetration test. Extra-low dosage mortars, especially those loaded with a lower oxidation degree (i.e., 0.45GO), showed decreased permeability and improved barrier to chloride ion transport combined with enhanced thermal and electrical conductivity with respect to that of the control samples.

4.
Materials (Basel) ; 16(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36770195

ABSTRACT

The increase in concrete structures' durability is a milestone to improve the sustainability of buildings and infrastructures. In order to ensure a prolonged service life, it is necessary to detect the deterioration of materials by means of monitoring systems aimed at evaluating not only the penetration of aggressive substances into concrete but also the corrosion of carbon-steel reinforcement. Therefore, proper data collection makes it possible to plan suitable restoration works which can be carried out with traditional or innovative techniques and materials. This work focuses on building heritage and it highlights the most recent findings for the conservation and restoration of reinforced concrete structures and masonry buildings.

5.
Nanomaterials (Basel) ; 11(12)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34947625

ABSTRACT

The impact of extra-low dosage (0.01% by weight of cement) Graphene Oxide (GO) on the properties of fresh and hardened nanocomposites was assessed. The use of a minimum amount of 2-D nanofiller would minimize costs and sustainability issues, therefore encouraging the market uptake of nanoengineered cement-based materials. GO was characterized by X-ray Photoelectron Spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), and Raman spectroscopy. GO consisted of stacked sheets up to 600 nm × 800 nm wide and 2 nm thick, oxygen content 31 at%. The impact of GO on the fresh admixtures was evaluated by rheology, flowability, and workability measurements. GO-modified samples were characterized by density measurements, Scanning Electron Microscopy (SEM) analysis, and compression and bending tests. Permeability was investigated using the boiling-water saturation technique, salt ponding test, and Initial Surface Absorption Test (ISAT). At 28 days, GO-nanocomposite exhibited increased density (+14%), improved compressive and flexural strength (+29% and +13%, respectively), and decreased permeability compared to the control sample. The strengthening effect dominated over the adverse effects associated with the worsening of the fresh properties; reduced permeability was mainly attributed to the refining of the pore network induced by the presence of GO.

SELECTION OF CITATIONS
SEARCH DETAIL