Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters











Publication year range
1.
Front Psychiatry ; 15: 1337882, 2024.
Article in English | MEDLINE | ID: mdl-39355381

ABSTRACT

Introduction: Schizophrenia is characterized by a loss of network features between cognition and reward sub-circuits (notably involving the mesolimbic system), and this loss may explain deficits in learning and cognition. Learning in schizophrenia has typically been studied with tasks that include reward related contingencies, but recent theoretical models have argued that a loss of network features should be seen even when learning without reward. We tested this model using a learning paradigm that required participants to learn without reward or feedback. We used a novel method for capturing higher order network features, to demonstrate that the mesolimbic system is heavily implicated in the loss of network features in schizophrenia, even when learning without reward. Methods: fMRI data (Siemens Verio 3T) were acquired in a group of schizophrenia patients and controls (n=78; 46 SCZ, 18 ≤ Age ≤ 50) while participants engaged in associative learning without reward-related contingencies. The task was divided into task-active conditions for encoding (of associations) and cued-retrieval (where the cue was to be used to retrieve the associated memoranda). No feedback was provided during retrieval. From the fMRI time series data, network features were defined as follows: First, for each condition of the task, we estimated 2nd order undirected functional connectivity for each participant (uFC, based on zero lag correlations between all pairs of regions). These conventional 2nd order features represent the task/condition evoked synchronization of activity between pairs of brain regions. Next, in each of the patient and control groups, the statistical relationship between all possible pairs of 2nd order features were computed. These higher order features represent the consistency between all possible pairs of 2nd order features in that group and embed within them the contributions of individual regions to such group structure. Results: From the identified inter-group differences (SCZ ≠ HC) in higher order features, we quantified the respective contributions of individual brain regions. Two principal effects emerged: 1) SCZ were characterized by a massive loss of higher order features during multiple task conditions (encoding and retrieval of associations). 2) Nodes in the mesolimbic system were over-represented in the loss of higher order features in SCZ, and notably so during retrieval. Discussion: Our analytical goals were linked to a recent circuit-based integrative model which argued that synergy between learning and reward circuits is lost in schizophrenia. The model's notable prediction was that such a loss would be observed even when patients learned without reward. Our results provide substantial support for these predictions where we observed a loss of network features between the brain's sub-circuits for a) learning (including the hippocampus and prefrontal cortex) and b) reward processing (specifically constituents of the mesolimbic system that included the ventral tegmental area and the nucleus accumbens. Our findings motivate a renewed appraisal of the relationship between reward and cognition in schizophrenia and we discuss their relevance for putative behavioral interventions.

2.
Article in English | MEDLINE | ID: mdl-39355755

ABSTRACT

Volumetric biomedical microscopy has the potential to increase the diagnostic information extracted from clinical tissue specimens and improve the diagnostic accuracy of both human pathologists and computational pathology models. Unfortunately, barriers to integrating 3-dimensional (3D) volumetric microscopy into clinical medicine include long imaging times, poor depth/z-axis resolution, and an insufficient amount of high-quality volumetric data. Leveraging the abundance of high-resolution 2D microscopy data, we introduce masked slice diffusion for super-resolution (MSDSR), which exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens. This intrinsic characteristic allows for super-resolution models trained on high-resolution images from one plane (e.g., XY) to effectively generalize to others (XZ, YZ), overcoming the traditional dependency on orientation. We focus on the application of MSDSR to stimulated Raman histology (SRH), an optical imaging modality for biological specimen analysis and intraoperative diagnosis, characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning. To evaluate MSDSR's efficacy, we introduce a new performance metric, SliceFID, and demonstrate MSDSR's superior performance over baseline models through extensive evaluations. Our findings reveal that MSDSR not only significantly enhances the quality and resolution of 3D volumetric data, but also addresses major obstacles hindering the broader application of 3D volumetric microscopy in clinical diagnostics and biomedical research.

3.
medRxiv ; 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39252932

ABSTRACT

Accurate intraoperative diagnosis is crucial for differentiating between primary CNS lymphoma (PCNSL) and other CNS entities, guiding surgical decision-making, but represents significant challenges due to overlapping histomorphological features, time constraints, and differing treatment strategies. We combined stimulated Raman histology (SRH) with deep learning to address this challenge. We imaged unprocessed, label-free tissue samples intraoperatively using a portable Raman scattering microscope, generating virtual H&E-like images within less than three minutes. We developed a deep learning pipeline called RapidLymphoma based on a self-supervised learning strategy to (1) detect PCNSL, (2) differentiate from other CNS entities, and (3) test the diagnostic performance in a prospective international multicenter cohort and two additional independent test cohorts. We trained on 54,000 SRH patch images sourced from surgical resections and stereotactic-guided biopsies, including various CNS tumor/non-tumor lesions. Training and test data were collected from four tertiary international medical centers. The final histopathological diagnosis served as ground-truth. In the prospective test cohort of PCNSL and non-PCNSL entities (n=160), RapidLymphoma achieved an overall balanced accuracy of 97.81% ±0.91, non-inferior to frozen section analysis in detecting PCNSL (100% vs. 78.94%). The additional test cohorts (n=420, n=59) reached balanced accuracy rates of 95.44% ±0.74 and 95.57% ±2.47 in differentiating IDH-wildtype diffuse gliomas and various brain metastasis from PCNSL. Visual heatmaps revealed RapidLymphoma's capabilities to detect class-specific histomorphological key features. RapidLymphoma is valid and reliable in detecting PCNSL and differentiating from other CNS entities within three minutes, as well as visual feedback in an intraoperative setting. This leads to fast clinical decision-making and further treatment strategy planning.

4.
Psychiatry Res Neuroimaging ; 340: 111805, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447230

ABSTRACT

Altered brain network profiles in schizophrenia (SCZ) during memory consolidation are typically observed during task-active periods such as encoding or retrieval. However active processes are also sub served by covert periods of memory consolidation. These periods are active in that they allow memories to be recapitulated even in the absence of overt sensorimotor processing. It is plausible that regions central to memory formation like the dlPFC and the hippocampus, exert network signatures during covert periods. Are these signatures altered in patients? The question is clinically relevant because real world learning and memory is facilitated by covert processing, and may be impaired in schizophrenia. Here, we compared network signatures of the dlPFC and the hippocampus during covert periods of a learning and memory task. Because behavioral proficiency increased non-linearly, functional connectivity of the dlPFC and hippocampus [psychophysiological interaction (PPI)] was estimated for each of the Early (linear increases in performance) and Late (asymptotic performance) covert periods. During Early periods, we observed hypo-modulation by the hippocampus but hyper-modulation by dlPFC. Conversely, during Late periods, we observed hypo-modulation by both the dlPFC and the hippocampus. We stitch these results into a conceptual model of network deficits during covert periods of memory consolidation.


Subject(s)
Memory Consolidation , Schizophrenia , Humans , Dorsolateral Prefrontal Cortex , Prefrontal Cortex , Schizophrenia/diagnostic imaging , Brain Mapping , Magnetic Resonance Imaging , Hippocampus
5.
Schizophrenia (Heidelb) ; 10(1): 38, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503766

ABSTRACT

Schizophrenia is characterized by the misattribution of emotional significance to neutral faces, accompanied by overactivations of the limbic system. To understand the disorder's genetic and environmental contributors, investigating healthy first-degree relatives is crucial. However, inconsistent findings exist regarding their ability to recognize neutral faces, with limited research exploring the cerebral correlates of neutral face processing in this population. Thus, we here investigated brain responses to neutral face processing in healthy first-degree relatives through an image-based meta-analysis of functional magnetic resonance imaging studies. We included unthresholded group-level T-maps from 5 studies comprising a total of 120 first-degree relatives and 150 healthy controls. In sensitivity analyses, we ran a combined image- and coordinate-based meta-analysis including 7 studies (157 first-degree relatives, 207 healthy controls) aiming at testing the robustness of the results in a larger sample of studies. Our findings revealed a pattern of decreased brain responses to neutral faces in relatives compared with healthy controls, particularly in limbic areas such as the bilateral amygdala, hippocampus, and insula. The same pattern was observed in sensitivity analyses. These results contrast with the overactivations observed in patients, potentially suggesting that this trait could serve as a protective factor in healthy relatives. However, further research is necessary to test this hypothesis.

6.
Neuroinformatics ; 22(1): 45-62, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37924429

ABSTRACT

BOLD-based fMRI is the most widely used method for studying brain function. The BOLD signal while valuable, is beset with unique vulnerabilities. The most notable of these is the modest signal to noise ratio, and the relatively low temporal and spatial resolution. However, the high dimensional complexity of the BOLD signal also presents unique opportunities for functional discovery. Topological Data Analyses (TDA), a branch of mathematics optimized to search for specific classes of structure within high dimensional data may provide particularly valuable applications. In this investigation, we acquired fMRI data in the anterior cingulate cortex (ACC) using a basic motor control paradigm. Then, for each participant and each of three task conditions, fMRI signals in the ACC were summarized using two methods: a) TDA based methods of persistent homology and persistence landscapes and b) non-TDA based methods using a standard vectorization scheme. Finally, using machine learning (with support vector classifiers), classification accuracy of TDA and non-TDA vectorized data was tested across participants. In each participant, TDA-based classification out-performed the non-TDA based counterpart, suggesting that our TDA analytic pipeline better characterized task- and condition-induced structure in fMRI data in the ACC. Our results emphasize the value of TDA in characterizing task- and condition-induced structure in regional fMRI signals. In addition to providing our analytical tools for other users to emulate, we also discuss the unique role that TDA-based methods can play in the study of individual differences in the structure of functional brain signals in the healthy and the clinical brain.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Brain/diagnostic imaging , Gyrus Cinguli , Data Analysis
7.
Article in English | MEDLINE | ID: mdl-37654477

ABSTRACT

Learning high-quality, self-supervised, visual representations is essential to advance the role of computer vision in biomedical microscopy and clinical medicine. Previous work has focused on self-supervised representation learning (SSL) methods developed for instance discrimination and applied them directly to image patches, or fields-of-view, sampled from gigapixel whole-slide images (WSIs) used for cancer diagnosis. However, this strategy is limited because it (1) assumes patches from the same patient are independent, (2) neglects the patient-slide-patch hierarchy of clinical biomedical microscopy, and (3) requires strong data augmentations that can degrade downstream performance. Importantly, sampled patches from WSIs of a patient's tumor are a diverse set of image examples that capture the same underlying cancer diagnosis. This motivated HiDisc, a data-driven method that leverages the inherent patient-slide-patch hierarchy of clinical biomedical microscopy to define a hierarchical discriminative learning task that implicitly learns features of the underlying diagnosis. HiDisc uses a self-supervised contrastive learning framework in which positive patch pairs are defined based on a common ancestry in the data hierarchy, and a unified patch, slide, and patient discriminative learning objective is used for visual SSL. We benchmark HiDisc visual representations on two vision tasks using two biomedical microscopy datasets, and demonstrate that (1) HiDisc pretraining outperforms current state-of-the-art self-supervised pretraining methods for cancer diagnosis and genetic mutation prediction, and (2) HiDisc learns high-quality visual representations using natural patch diversity without strong data augmentations.

8.
Schizophr Res ; 258: 21-35, 2023 08.
Article in English | MEDLINE | ID: mdl-37467677

ABSTRACT

Motivational deficits in schizophrenia may interact with foundational cognitive processes including learning and memory to induce impaired cognitive proficiency. If such a loss of synergy exists, it is likely to be underpinned by a loss of synchrony between the brains learning and reward sub-networks. Moreover, this loss should be observed even during tasks devoid of explicit reward contingencies given that such tasks are better models of real world performance than those with artificial contingencies. Here we applied undirected functional connectivity (uFC) analyses to fMRI data acquired while participants engaged in an associative learning task without contingencies or feedback. uFC was estimated and inter-group differences (between schizophrenia patients and controls, n = 54 total, n = 28 patients) were assessed within and between reward (VTA and NAcc) and learning/memory (Basal Ganglia, DPFC, Hippocampus, Parahippocampus, Occipital Lobe) sub-networks. The task paradigm itself alternated between Encoding, Consolidation, and Retrieval conditions, and uFC differences were quantified for each of the conditions. Significantly reduced uFC dominated the connectivity profiles of patients across all conditions. More pertinent to our motivations, these reductions were observed within and across classes of sub-networks (reward-related and learning/memory related). We suggest that disrupted functional connectivity between reward and learning sub-networks may drive many of the performance deficits that characterize schizophrenia. Thus, cognitive deficits in schizophrenia may in fact be underpinned by a loss of synergy between reward-sensitivity and cognitive processes.


Subject(s)
Schizophrenia , Humans , Schizophrenia/complications , Schizophrenia/diagnostic imaging , Learning , Brain/diagnostic imaging , Reward , Hippocampus , Magnetic Resonance Imaging
9.
Netw Neurosci ; 7(1): 184-212, 2023.
Article in English | MEDLINE | ID: mdl-37333998

ABSTRACT

There is a paucity of graph theoretic methods applied to task-based data in schizophrenia (SCZ). Tasks are useful for modulating brain network dynamics, and topology. Understanding how changes in task conditions impact inter-group differences in topology can elucidate unstable network characteristics in SCZ. Here, in a group of patients and healthy controls (n = 59 total, 32 SCZ), we used an associative learning task with four distinct conditions (Memory Formation, Post-Encoding Consolidation, Memory Retrieval, and Post-Retrieval Consolidation) to induce network dynamics. From the acquired fMRI time series data, betweenness centrality (BC), a metric of a node's integrative value was used to summarize network topology in each condition. Patients showed (a) differences in BC across multiple nodes and conditions; (b) decreased BC in more integrative nodes, but increased BC in less integrative nodes; (c) discordant node ranks in each of the conditions; and (d) complex patterns of stability and instability of node ranks across conditions. These analyses reveal that task conditions induce highly variegated patterns of network dys-organization in SCZ. We suggest that the dys-connection syndrome that is schizophrenia, is a contextually evoked process, and that the tools of network neuroscience should be oriented toward elucidating the limits of this dys-connection.

10.
Neurosurgery ; 69(Suppl 1): 22-23, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36924489

ABSTRACT

INTRODUCTION: Molecular classification has transformed the management of brain tumors by enabling more accurate prognostication and personalized treatment. Access to timely molecular diagnostic testing for brain tumor patients is limited, complicating surgical and adjuvant treatment and obstructing clinical trial enrollment. METHODS: By combining stimulated Raman histology (SRH), a rapid, label-free, non-consumptive, optical imaging method, and deep learning-based image classification, we are able to predict the molecular genetic features used by the World Health Organization (WHO) to define the adult-type diffuse glioma taxonomy, including IDH-1/2, 1p19q-codeletion, and ATRX loss. We developed a multimodal deep neural network training strategy that uses both SRH images and large-scale, public diffuse glioma genomic data (i.e. TCGA, CGGA, etc.) in order to achieve optimal molecular classification performance. RESULTS: One institution was used for model training (University of Michigan) and four institutions (NYU, UCSF, Medical University of Vienna, and University Hospital Cologne) were included for patient enrollment in the prospective testing cohort. Using our system, called DeepGlioma, we achieved an average molecular genetic classification accuracy of 93.2% and identified the correct diffuse glioma molecular subgroup with 91.5% accuracy within 2 minutes in the operating room. DeepGlioma outperformed conventional IDH1-R132H immunohistochemistry (94.2% versus 91.4% accuracy) as a first-line molecular diagnostic screening method for diffuse gliomas and can detect canonical and non-canonical IDH mutations. CONCLUSIONS: Our results demonstrate how artificial intelligence and optical histology can be used to provide a rapid and scalable alternative to wet lab methods for the molecular diagnosis of brain tumor patients during surgery.


Subject(s)
Brain Neoplasms , Glioma , Adult , Humans , Artificial Intelligence , Prospective Studies , Glioma/diagnostic imaging , Glioma/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Immunohistochemistry , Isocitrate Dehydrogenase/genetics , Mutation/genetics
11.
Nat Med ; 29(4): 828-832, 2023 04.
Article in English | MEDLINE | ID: mdl-36959422

ABSTRACT

Molecular classification has transformed the management of brain tumors by enabling more accurate prognostication and personalized treatment. However, timely molecular diagnostic testing for patients with brain tumors is limited, complicating surgical and adjuvant treatment and obstructing clinical trial enrollment. In this study, we developed DeepGlioma, a rapid (<90 seconds), artificial-intelligence-based diagnostic screening system to streamline the molecular diagnosis of diffuse gliomas. DeepGlioma is trained using a multimodal dataset that includes stimulated Raman histology (SRH); a rapid, label-free, non-consumptive, optical imaging method; and large-scale, public genomic data. In a prospective, multicenter, international testing cohort of patients with diffuse glioma (n = 153) who underwent real-time SRH imaging, we demonstrate that DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy (IDH mutation, 1p19q co-deletion and ATRX mutation), achieving a mean molecular classification accuracy of 93.3 ± 1.6%. Our results represent how artificial intelligence and optical histology can be used to provide a rapid and scalable adjunct to wet lab methods for the molecular screening of patients with diffuse glioma.


Subject(s)
Brain Neoplasms , Glioma , Adult , Humans , Artificial Intelligence , Prospective Studies , Glioma/diagnostic imaging , Glioma/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Mutation , Isocitrate Dehydrogenase/genetics , Optical Imaging , Intelligence
12.
World J Biol Psychiatry ; 24(8): 730-740, 2023 10.
Article in English | MEDLINE | ID: mdl-36999359

ABSTRACT

OBJECTIVES: Schizophrenia is characterised by deficits across multiple cognitive domains and altered glutamate related neuroplasticity. The purpose was to investigate whether glutamate deficits are related to cognition in schizophrenia, and whether glutamate-cognition relationships are different between schizophrenia and controls. METHODS: Magnetic resonance spectroscopy (MRS) at 3 Tesla was acquired from the dorsolateral prefrontal cortex (dlPFC) and hippocampus in 44 schizophrenia participants and 39 controls during passive viewing visual task. Cognitive performance (working memory, episodic memory, and processing speed) was assessed on a separate session. Group differences in neurochemistry and mediation/moderation effects using structural equation modelling (SEM) were investigated. RESULTS: Schizophrenia participants showed lower hippocampal glutamate (p = .0044) and myo-Inositol (p = .023) levels, and non-significant dlPFC levels. Schizophrenia participants also demonstrated poorer cognitive performance (p < .0032). SEM-analyses demonstrated no mediation or moderation effects, however, an opposing dlPFC glutamate-processing speed association between groups was observed. CONCLUSIONS: Hippocampal glutamate deficits in schizophrenia participants are consistent with evidence of reduced neuropil density. Moreover, SEM analyses indicated that hippocampal glutamate deficits in schizophrenia participants as measured during a passive state were not driven by poorer cognitive ability. We suggest that functional MRS may provide a better framework for investigating glutamate-cognition relationships in schizophrenia.


Subject(s)
Schizophrenia , Humans , Glutamic Acid , Dorsolateral Prefrontal Cortex , Latent Class Analysis , Memory, Short-Term , Hippocampus/diagnostic imaging , Cognition , Prefrontal Cortex/diagnostic imaging , Magnetic Resonance Imaging
13.
Biol Psychiatry ; 93(2): 167-177, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36085080

ABSTRACT

BACKGROUND: Impaired emotion processing constitutes a key dimension of schizophrenia and a possible endophenotype of this illness. Empirical studies consistently report poorer emotion recognition performance in patients with schizophrenia as well as in individuals at enhanced risk of schizophrenia. Functional magnetic resonance imaging studies also report consistent patterns of abnormal brain activation in response to emotional stimuli in patients, in particular, decreased amygdala activation. In contrast, brain-level abnormalities in at-risk individuals are more elusive. We address this gap using an image-based meta-analysis of the functional magnetic resonance imaging literature. METHODS: Functional magnetic resonance imaging studies investigating brain responses to negative emotional stimuli and reporting a comparison between at-risk individuals and healthy control subjects were identified. Frequentist and Bayesian voxelwise meta-analyses were performed separately, by implementing a random-effect model with unthresholded group-level T-maps from individual studies as input. RESULTS: In total, 17 studies with a cumulative total of 677 at-risk individuals and 805 healthy control subjects were included. Frequentist analyses did not reveal significant differences between at-risk individuals and healthy control subjects. Similar results were observed with Bayesian analyses, which provided strong evidence for the absence of meaningful brain activation differences across the entire brain. Region of interest analyses specifically focusing on the amygdala confirmed the lack of group differences in this region. CONCLUSIONS: These results suggest that brain activation patterns in response to emotional stimuli are unlikely to constitute a reliable endophenotype of schizophrenia. We suggest that future studies instead focus on impaired functional connectivity as an alternative and promising endophenotype.


Subject(s)
Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Endophenotypes , Bayes Theorem , Emotions/physiology , Brain/diagnostic imaging , Magnetic Resonance Imaging , Brain Mapping , Facial Expression
14.
Transl Psychiatry ; 12(1): 449, 2022 10 16.
Article in English | MEDLINE | ID: mdl-36244980

ABSTRACT

Intensive cognitive tasks induce inefficient regional and network responses in schizophrenia (SCZ). fMRI-based studies have naturally focused on gray matter, but appropriately titrated visuo-motor integration tasks reliably activate inter- and intra-hemispheric white matter pathways. Such tasks can assess network inefficiency without demanding intensive cognitive effort. Here, we provide the first application of this framework to the study of white matter functional responses in SCZ. Event-related fMRI data were acquired from 28 patients (nine females, mean age 43.3, ±11.7) and 28 age- and gender-comparable controls (nine females, mean age 42.1 ± 10.1), using the Poffenberger paradigm, a rapid visual detection task used to induce intra- (ipsi-lateral visual and motor cortex) or inter-hemispheric (contra-lateral visual and motor cortex) transfer. fMRI data were pre- and post-processed to reliably isolate activations in white matter, using probabilistic tractography-based white matter tracts. For intra- and inter-hemispheric transfer conditions, SCZ evinced hyper-activations in longitudinal and transverse white matter tracts, with hyper-activation in sub-regions of the corpus callosum primarily observed during inter-hemispheric transfer. Evidence for the functional inefficiency of white matter was observed in conjunction with small (~50 ms) but significant increases in response times. Functional inefficiencies in SCZ are (1) observable in white matter, with the degree of inefficiency contextually related to task-conditions, and (2) are evoked by simple detection tasks without intense cognitive processing. These cumulative results while expanding our understanding of this dys-connection syndrome, also extend the search of biomarkers beyond the traditional realm of fMRI studies of gray matter.


Subject(s)
Schizophrenia , White Matter , Adult , Brain/physiology , Communication , Corpus Callosum/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Schizophrenia/diagnostic imaging , White Matter/diagnostic imaging
15.
Front Psychiatry ; 13: 869106, 2022.
Article in English | MEDLINE | ID: mdl-36032258

ABSTRACT

Abnormal function of the thalamo-cortical relay is considered a hallmark of obsessive-compulsive disorder (OCD) and aberrant network interactions may underpin many of the clinical and cognitive symptoms that characterize the disorder. Several statistical approaches have been applied to in vivo fMRI data to support the general loss of thalamo-cortical connectivity in OCD. However, (a) few studies have assessed the contextual constraints under which abnormal network interactions arise or (b) have used methods of effective connectivity to understand abnormal network interactions. Effective connectivity is a particularly valuable method as it describes the putative causal influences that brain regions exert over each other, as opposed to the largely statistical consistencies captured in functional connectivity techniques. Here, using dynamic causal modeling (DCM), we evaluated how attention demand induced inter-group differences (HC ≠ OCD) in effective connectivity within a motivated thalamo-cortical network. Of interest was whether these effects were observed on the ascending thalamo-cortical relay, essential for the sensory innervation of the cortex. fMRI time series data from sixty-two participants (OCD, 30; HC, 32) collected using an established sustained attention task were submitted to a space of 162 competing models. Across the space, models distinguished between competing hypotheses of thalamo-cortical interactions. Bayesian model selection (BMS) identified marginally differing likely generative model architectures in OCD and HC groups. Bayesian model averaging (BMA), was used to weight connectivity parameter estimates across all models, with each parameter weighted by each model's posterior probability, thus providing more stable estimates of effective connectivity. Inferential statistical analyses of estimated parameters revealed two principal results: (1) Significantly reduced intrinsic connectivity of the V1 → SPC pathway in OCD, suggested connective weakness in the early constituents of the dorsal visual pathway; (2) More pertinent with the discovery possibilities afforded by DCM, sustained attention in OCD patients induced significantly reduced contextual modulation of the ascending relay from the thalamus to the prefrontal cortex. These results form an important complement to our understanding of the contextual bases of thalamo-cortical network deficits in OCD, emphasizing vulnerability of the ascending relay.

16.
Adv Neural Inf Process Syst ; 35(DB): 28502-28516, 2022 Dec.
Article in English | MEDLINE | ID: mdl-37082565

ABSTRACT

Accurate intraoperative diagnosis is essential for providing safe and effective care during brain tumor surgery. Our standard-of-care diagnostic methods are time, resource, and labor intensive, which restricts access to optimal surgical treatments. To address these limitations, we propose an alternative workflow that combines stimulated Raman histology (SRH), a rapid optical imaging method, with deep learning-based automated interpretation of SRH images for intraoperative brain tumor diagnosis and real-time surgical decision support. Here, we present OpenSRH, the first public dataset of clinical SRH images from 300+ brain tumors patients and 1300+ unique whole slide optical images. OpenSRH contains data from the most common brain tumors diagnoses, full pathologic annotations, whole slide tumor segmentations, raw and processed optical imaging data for end-to-end model development and validation. We provide a framework for patch-based whole slide SRH classification and inference using weak (i.e. patient-level) diagnostic labels. Finally, we benchmark two computer vision tasks: multiclass histologic brain tumor classification and patch-based contrastive representation learning. We hope OpenSRH will facilitate the clinical translation of rapid optical imaging and real-time ML-based surgical decision support in order to improve the access, safety, and efficacy of cancer surgery in the era of precision medicine. Dataset access, code, and benchmarks are available at https://opensrh.mlins.org.

17.
Brain Struct Funct ; 227(1): 299-312, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34605996

ABSTRACT

Homeostatic centers in the mammalian brainstem are critical in responding to thermal challenges. These centers play a prominent role in human thermoregulation, but humans also respond to thermal challenges through behavior modification. Behavioral modifications are presumably sub served by interactions between the brainstem and interoceptive, cognitive and affective elements in human brain networks. Prior evidence suggests that interoceptive regions such as the insula, and cognitive/affective regions such as the orbitofrontal cortex and anterior cingulate cortex are crucial. Here we used dynamic causal modeling (DCM) to discover likely generative network architectures and estimate changes in the effective connectivity between nodes in a hierarchically organized thermoregulatory network (homeostatic-interoceptive-cognitive/affective). fMRI data were acquired while participants (N = 20) were subjected to a controlled whole body thermal challenge that alternatingly evoked sympathetic and parasympathetic responses. Using a competitive modeling framework (ten competing modeling architectures), we demonstrated that sympathetic responses (evoked by whole-body cooling) resulted in more complex network interactions along two ascending pathways: (i) homeostatic interoceptive and (ii) homeostatic cognitive/affective. Analyses of estimated connectivity coefficients demonstrated that sympathetic responses evoked greater network connectivity in key pathways compared to parasympathetic responses. These results reveal putative mechanisms by which human thermoregulatory networks evince a high degree of contextual sensitivity to thermoregulatory challenges. The patterns of the discovered interactions also reveal how information propagation from homeostatic regions to both interoceptive and cognitive/affective regions sub serves the behavioral repertoire that is an important aspect of thermoregulatory defense in humans.


Subject(s)
Brain Mapping , Brain , Body Temperature Regulation , Brain/diagnostic imaging , Cerebral Cortex , Humans , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging
18.
Cogn Affect Behav Neurosci ; 21(5): 1039-1053, 2021 10.
Article in English | MEDLINE | ID: mdl-33990933

ABSTRACT

In Pavlovian fear conditioning, contingency awareness provides an indicator of explicit fear learning. A less studied aspect of fear-based psychopathologies and their treatment, awareness of learned fear is a common cause of distress in persons with such conditions and is a focus of their treatment. The present work is a substudy of a broader fear-conditioning fMRI study. Following fear conditioning, we identified a subset of individuals who did not exhibit explicit awareness of the CS-US contingency. This prompted an exploratory analysis of differences in "aware" versus "unaware" individuals after fear conditioning. Self-reported expectancies of the CS-US contingency obtained immediately following fear conditioning were used to differentiate the two groups. Results corrected for multiple comparisons indicated significantly greater BOLD signal in the bilateral dlPFC, right vmPFC, bilateral vlPFC, left insula, left hippocampus, and bilateral amygdala for the CS+>CS- contrast in the aware group compared with the unaware group (all p values ≤ 0.004). PPI analysis with a left hippocampal seed indicated stronger coupling with the dlPFC and vmPFC in the aware group compared with the unaware group (all p values ≤ 0.002). Our findings add to our current knowledge of the networks involved in explicit learning and awareness of conditioned fear, with important clinical implications.


Subject(s)
Awareness , Conditioning, Classical , Amygdala , Fear , Humans , Magnetic Resonance Imaging
19.
Psychol Med ; : 1-11, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33858552

ABSTRACT

BACKGROUND: Borderline personality disorder (BPD) is characterized by instability in affective regulation that can result in a loss of cognitive control. Triggers may be neuronal responses to emotionally valenced context and/or stimuli. 'Neuronal priming' indexes the familiarity of stimuli, and may capture the obligatory effects of affective valence on the brain's processing system, and how such valence mediates responses to the repeated presentation of stimuli. We investigated the effects of affective valence of stimuli on neuronal priming (i.e. changes in activation to repeated presentation of stimuli), and if these effects distinguished BPD patients from controls. METHODS: Forty BPD subjects and 25 control subjects (age range: 18-44) participated in an episodic memory task during fMRI. Stimuli were presented in alternating epochs of encoding (six images of positive, negative, and neutral valence) and recognition (six images for 'old' v. 'new' recognition). Analyses focused on inter-group differences in the change in activation to repeated stimuli (presented during Encoding and Recognition). RESULTS: Relative to controls, BPD showed greater priming (generally greater decrease from encoding to recognition) for negatively valenced stimuli. Conversely, BPD showed less priming for positively valenced stimuli (generally greater increase from encoding to recognition). CONCLUSION: Plausibly, the relative familiarity of negative valence to patients with BPD exerts an influence on obligatory responses to repeated stimuli leading to repetition priming of neuronal profiles. The specific effects of valence on memory and/or attention, and consequently on priming can inform the understanding of mechanisms of altered salience for affective stimuli in BPD.

20.
J Psychiatr Res ; 132: 72-83, 2021 01.
Article in English | MEDLINE | ID: mdl-33068817

ABSTRACT

Interest in the pathology of Obsessive-Compulsive Disorder\has focused on brain network profiles of the dorsal Anterior Cingulate Cortex (dACC), given its role as a principal control region. Both motor control and working memory tasks induce dysfunctional dACC profiles in OCD. H H We contrasted dACC network profiles in OCD and age-comparable controls during both tasks (from data collected in the same participants). The motor task required participants to tap their right forefinger in response to a flashing white probe; the memory task was a standard n-back (2-Back) requiring participants to identify if a current stimulus was identical to the one presented two items before it in the sequence. Network interactions were modeled using Psychophysiological Interactions (PPI), a model of directional functional connectivity. Inter-group analyses indicated a) that the motor control task evoked greater dACC modulation than the working memory task, and b) that the modulatory effect was significantly greater in the OCD group. We also investigated the relationship between OCD symptom dimensions (lifetime obsession and lifetime compulsion measured using the CY-BOCS) and dACC network profiles in OCD. This analysis revealed a dichotomy between Obsessive-Compulsive symptom dimensions and the degree of dACC modulation: primarily increased obsessions predicted increased modulation during the motor control task, but primarily increased compulsions predicted increased modulation during the working memory task. These results re-emphasize the salience of the dACC in OCD, and the primacy of tasks of motor control in evoking dACC pathology in the disorder.


Subject(s)
Gyrus Cinguli , Obsessive-Compulsive Disorder , Adolescent , Humans , Magnetic Resonance Imaging , Memory, Short-Term
SELECTION OF CITATIONS
SEARCH DETAIL