Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Osteoarthritis Cartilage ; 24(3): 503-13, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26463451

ABSTRACT

OBJECTIVE: Intervertebral disc degeneration (IDD) can lead to symptomatic conditions including sciatica and back pain. The purpose of this study is to understand the extracellular matrix (ECM) changes in disc biology through comparative proteomic analysis of degenerated and non-degenerated human intervertebral disc (IVD) tissues of different ages. DESIGN: Seven non-degenerated (11-46 years of age) and seven degenerated (16-53 years of age) annulus fibrosus (AF) and nucleus pulposus (NP) samples were used. Proteins were extracted using guanidine hydrochloride, separated from large proteoglycans (PGs) by caesium chloride (CsCl) density gradient ultracentrifugation, and identified using liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS). For quantitative comparison, proteins were labeled with iTRAQ reagents. Collagen fibrils in the NP were assessed using scanning electron microscopy (SEM). RESULTS: In the AF, quantitative analysis revealed increased levels of HTRA1, COMP and CILP in degeneration when compared with samples from older individuals. Fibronectin showed increment with age and degeneration. In the NP, more CILP and CILP2 were present in degenerated samples of younger individuals. Reduced protein solubility was observed in degenerated and older non-degenerated samples correlated with an accumulation of type I collagen in the insoluble fibers. Characterization of collagen fibrils in the NP revealed smaller mean fibril diameters and decreased porosity in the degenerated samples. CONCLUSIONS: Our study identified distinct matrix changes associated with aging and degeneration in the intervertebral discs (IVDs). The nature of the ECM changes, together with observed decreased in solubility and changes in fibril diameter is consistent with a fibrotic-like environment.


Subject(s)
Intervertebral Disc Degeneration/metabolism , Intervertebral Disc/metabolism , Adolescent , Adult , Aging/metabolism , Child , Collagen/metabolism , Fibrosis , Humans , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/pathology , Microscopy, Electron, Scanning/methods , Middle Aged , Nucleus Pulposus/metabolism , Nucleus Pulposus/ultrastructure , Proteins/metabolism , Proteomics/methods , Solubility , Young Adult
2.
J Am Soc Mass Spectrom ; 12(10): 1114-9, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11605973

ABSTRACT

Fragmentation of some electrospray-generated complex ions, [63CuII(amine)M].2+, where M is an enkephalin derivative, produces the radical cation of the peptide, M.+. This ion has only been observed when M contains a tyrosyl or tryptophanyl residue plus a basic residue, typically arginyl or lysyl. A typical viable amine is diethylenetriamine. Collision-induced dissociation (CID) of the M.+ ion yields a prominent [M - 106].+ product ion for tyrosine-containing peptides, and a prominent [M - 129].+ ion for a tryptophan-containing peptide. These fragment ions are formed as a result of elimination of the tyrosyl and tryptophanyl side chains. Dissociation of these ions, in turn, produces second generation product ions, many of which are typically absent in the fragmentation of protonated peptide ions. Structures for some of these unusual ions are proposed.


Subject(s)
Amines/chemistry , Copper/chemistry , Enkephalins/chemistry , Oligopeptides/chemistry , Indicators and Reagents , Spectrometry, Mass, Electrospray Ionization
3.
J Am Chem Soc ; 123(13): 3006-12, 2001 Apr 04.
Article in English | MEDLINE | ID: mdl-11457011

ABSTRACT

Proton migration in protonated glycylglycylglycine (GGG) has been investigated by using density functional theory at the B3LYP/6-31++G(d,p) level of theory. On the protonated GGG energy hypersurface 19 critical points have been characterized, 11 as minima and 8 as first-order saddle points. Transition state structures for interconversion between eight of these minima are reported, starting from a structure in which there is protonation at the amino nitrogen of the N-terminal glycyl residue following the migration of the proton until there is fragmentation into protonated 2-aminomethyl-5-oxazolone (the b(2) ion) and glycine. Individual free energy barriers are small, ranging from 4.3 to 18.1 kcal mol(-)(1). The most favorable site of protonation on GGG is the carbonyl oxygen of the N-terminal residue. This isomer is stabilized by a hydrogen bond of the type O-H.N with the N-terminal nitrogen atom, resulting in a compact five-membered ring. Another oxygen-protonated isomer with hydrogen bonding of the type O-H.O, resulting in a seven-membered ring, is only 0.1 kcal mol(-)(1) higher in free energy. Protonation on the N-terminal nitrogen atom produces an isomer that is about 1 kcal mol(-)(1) higher in free energy than isomers resulting from protonation on the carbonyl oxygen of the N-terminal residue. The calculated energy barrier to generate the b(2) ion from protonated GGG is 32.5 kcal mol(-)(1) via TS(6-->7). The calculated basicity and proton affinity of GGG from our results are 216.3 and 223.8 kcal mol(-)(1), respectively. These values are 3-4 kcal mol(-)(1) lower than those from previous calculations and are in excellent agreement with recently revised experimental values.


Subject(s)
Oligopeptides/chemistry , Oligopeptides/metabolism , Protons , Energy Transfer , Isomerism , Protein Binding , Quantum Theory
4.
J Am Soc Mass Spectrom ; 12(2): 163-75, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11212001

ABSTRACT

Tandem mass spectrometry performed on a pool of 18 oligopeptides shows that the product ion spectra of argentinated peptides, the [bn + OH + Ag]+ ions and the [yn - H + Ag]+ ions bearing identical sequences are virtually identical. These observations suggest strongly that these ions have identical structures in the gas phase. The structures of argentinated glycine, glycylglycine, and glycylglycylglycine were calculated using density functional theory (DFT) at the B3LYP/DZVP level of theory; they were independently confirmed using HF/LANL2DZ. For argentinated glycylglycylglycine, the most stable structure is one in which Ag+ is tetracoordinate and attached to the amino nitrogen and the three carbonyl oxygen atoms. Mechanisms are proposed for the fragmentation of this structure to the [b2 + OH + Ag]+ and the [Y2 - H + Ag]+ ions that are consistent with all experimental observations and known calculated structures and energetics. The structures of the [b2 - H + Ag]+ and the [a2 - H + Ag]+ ions of glycylglycylglycine were also calculated using DFT. These results confirm earlier suggestions that the [b2 - H + Ag]+ ion is an argentinated oxazolone and the [a2 - H + Ag]+ an argentinated immonium ion.


Subject(s)
Peptides/chemistry , Silver/chemistry , Mass Spectrometry
5.
Anal Chem ; 71(13): 2364-72, 1999 Jul 01.
Article in English | MEDLINE | ID: mdl-10405604

ABSTRACT

A strategy for semiautomatic sequencing of argentinated (silver-containing) oligopeptides has been developed. Sequencing is based on a search algorithm that identifies a triplet peak relationship in a product ion spectrum of the [M + Ag]+ ion of an oligopeptide. The ions that constitute a triplet are [bn + OH + Ag]+, [bn - H + Ag]+, and [a(n) - H + Ag]+, which are separated by 18 and 28 m/z units, respectively. The difference in the m/z values of adjacent triplets identifies the residue that is "cleaved". Observation of the [yn + H + Ag]+ ion containing the cleaved residue confirms the assignment. Sequencing of argentinated tryptic peptides may prove useful for automated proteome analysis via the sequence tag method.


Subject(s)
Oligopeptides/analysis , Silver/chemistry , Amino Acid Sequence , Animals , Cattle , Hydrolysis , Mass Spectrometry , Molecular Sequence Data , Oligopeptides/chemistry , Trypsin
SELECTION OF CITATIONS
SEARCH DETAIL