Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(23): 15229-15238, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38820532

ABSTRACT

Photon upconversion via triplet-triplet annihilation (TTA-UC) provides a pathway to overcoming the thermodynamic efficiency limits in single-junction solar cells by allowing the harvesting of sub-bandgap photons. Here, we use mixed halide perovskite nanocrystals (CsPbX3, X = Br/I) as triplet sensitizers, with excitation transfer to 9,10-diphenylanthracene (DPA) and/or 9,10-bis[(triisopropylsilyl)ethynyl]anthracene (TIPS-An) which act as the triplet annihilators. We observe that the upconversion efficiency is five times higher with the combination of both annihilators in a composite system compared to the sum of the individual single-acceptor systems. Our work illustrates the importance of using a composite system of annihilators to enhance TTA upconversion, demonstrated in a perovskite-sensitized system, with promise for a range of potential applications in light-harvesting, biomedical imaging, biosensing, therapeutics, and photocatalysis.

2.
ACS Nano ; 17(5): 4134-4179, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36821785

ABSTRACT

Two-dimensional (2D) materials including graphene, transition metal dichalcogenides, black phosphorus, MXenes, and semimetals have attracted extensive and widespread interest over the past years for their many intriguing properties and phenomena, underlying physics, and great potential for applications. The vast library of 2D materials and their heterostructures provides a diverse range of electrical, photonic, mechanical, and chemical properties with boundless opportunities for photonics and plasmonic devices. The infrared (IR) regime, with wavelengths across 0.78 µm to 1000 µm, has particular technological significance in industrial, military, commercial, and medical settings while facing challenges especially in the limit of materials. Here, we present a comprehensive review of the varied approaches taken to leverage the properties of the 2D materials for IR applications in photodetection and sensing, light emission and modulation, surface plasmon and phonon polaritons, non-linear optics, and Smith-Purcell radiation, among others. The strategies examined include the growth and processing of 2D materials, the use of various 2D materials like semiconductors, semimetals, Weyl-semimetals and 2D heterostructures or mixed-dimensional hybrid structures, and the engineering of light-matter interactions through nanophotonics, metasurfaces, and 2D polaritons. Finally, we give an outlook on the challenges in realizing high-performance and ambient-stable devices and the prospects for future research and large-scale commercial applications.

3.
Nanoscale Adv ; 4(5): 1318-1323, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35342862

ABSTRACT

In the research ecosystem's quest towards having deployable organic light-emitting diodes with higher-energy emission (e.g., blue light), we advocate focusing on fluorescent emitters, due to their relative stability and colour purity, and developing design strategies to significantly improve their efficiencies. We propose that all triplet-triplet annihilation upconversion (TTA-UC) emitters would make good candidates for triplet fusion-enhanced OLEDs ("FuLEDs"), due to the energetically uphill nature of the photophysical process, and their common requirements. We demonstrate this with the low-cost sky-blue 1,3-diphenylisobenzofuran (DPBF). Having satisfied the criteria for TTA-UC, we show DPBF as a photon upconverter (I th 92 mW cm-2), and henceforth demonstrate it as a bright emitter for FuLEDs. Notably, the devices achieved 6.5% external quantum efficiency (above the ∼5% threshold without triplet contribution), and triplet-exciton-fusion-generated fluorescence contributes up to 44% of the electroluminescence, as shown by transient measurements. Here, triplet fusion translates to a quantum yield (Φ TTA-UC) of 19%, at an electrical excitation of ∼0.01 mW cm-2. The enhancement is meaningful for commercial blue OLED displays. We also found DPBF to have decent hole mobilities of ∼0.08 cm2 V-1 s-1. This additional finding can lead to DPBF being used in other capacities in various printable electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...