Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Genome Biol Evol ; 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39373182

ABSTRACT

The olfactory sense is crucial for organisms, facilitating environmental recognition and inter-individual communication. Ithomiini butterflies exemplify this importance not only because they rely strongly on olfactory cues for both inter- and intra-sexual behaviours, but also because they show convergent evolution of specialized structures within the antennal lobe, called macro-glomerular complexes (MGCs). These structures, widely absent in butterflies, are present in moths where they enable heightened sensitivity to, and integration of information from various types of pheromones. In this study we investigate chemosensory evolution across six ithomiini species and identify possible links between expression profiles and neuroanatomical. To enable this, we sequenced four new high-quality genome assemblies and six sex-specific antennal transcriptomes for three of these species with different MGC morphologies. With extensive genomic analyses we found that the expression of antennal transcriptomes across species exhibit profound divergence, and identified highly expressed ORs, which we hypothesise may be associated to MGCs, as highly expressed ORs are absent in Methona, an Ithomiini lineage which also lacks MGCs. More broadly, we show how antennal sexual dimorphism is prevalent in both chemosensory genes and non-chemosensory genes, with possible relevance for behaviour. As an example, we show how lipid-related genes exhibit consistent sexual dimorphism, potentially linked to lipid transport or host selection. This study broadens the understanding of antennal chemosensory adaptations, suggesting a link between genetic diversity, ecological specialization, and sensory perception with the convergent evolution of MCGs. Insights into chemosensory gene evolution, expression patterns, and potential functional implications enhance our knowledge of sensory adaptations and sexual dimorphisms in butterflies, laying the foundation for future investigations into the genetic drivers of insect behaviour, adaptation, and speciation.

2.
J Exp Biol ; 226(24)2023 12 15.
Article in English | MEDLINE | ID: mdl-37921078

ABSTRACT

The striking structural variation seen in arthropod visual systems can be explained by the overall quantity and spatio-temporal structure of light within habitats coupled with developmental and physiological constraints. However, little is currently known about how fine-scale variation in visual structures arises across shorter evolutionary and ecological scales. In this study, we characterise patterns of interspecific (between species), intraspecific (between sexes) and intraindividual (between eye regions) variation in the visual system of four ithomiine butterfly species. These species are part of a diverse 26-million-year-old Neotropical radiation where changes in mimetic colouration are associated with fine-scale shifts in ecology, such as microhabitat preference. Using a combination of selection analyses on visual opsin sequences, in vivo ophthalmoscopy, micro-computed tomography (micro-CT), immunohistochemistry, confocal microscopy and neural tracing, we quantify and describe physiological, anatomical and molecular traits involved in visual processing. Using these data, we provide evidence of substantial variation within the visual systems of Ithomiini, including: (i) relaxed selection on visual opsins, perhaps mediated by habitat preference, (ii) interspecific shifts in visual system physiology and anatomy, and (iii) extensive sexual dimorphism, including the complete absence of a butterfly-specific optic neuropil in the males of some species. We conclude that considerable visual system variation can exist within diverse insect radiations, hinting at the evolutionary lability of these systems to rapidly develop specialisations to distinct visual ecologies, with selection acting at the perceptual, processing and molecular level.


Subject(s)
Butterflies , Animals , Male , Butterflies/physiology , X-Ray Microtomography , Biological Evolution , Eye/anatomy & histology , Opsins
3.
Nat Commun ; 14(1): 5620, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37699868

ABSTRACT

Heliconius butterflies, a speciose genus of Müllerian mimics, represent a classic example of an adaptive radiation that includes a range of derived dietary, life history, physiological and neural traits. However, key lineages within the genus, and across the broader Heliconiini tribe, lack genomic resources, limiting our understanding of how adaptive and neutral processes shaped genome evolution during their radiation. Here, we generate highly contiguous genome assemblies for nine Heliconiini, 29 additional reference-assembled genomes, and improve 10 existing assemblies. Altogether, we provide a dataset of annotated genomes for a total of 63 species, including 58 species within the Heliconiini tribe. We use this extensive dataset to generate a robust and dated heliconiine phylogeny, describe major patterns of introgression, explore the evolution of genome architecture, and the genomic basis of key innovations in this enigmatic group, including an assessment of the evolution of putative regulatory regions at the Heliconius stem. Our work illustrates how the increased resolution provided by such dense genomic sampling improves our power to generate and test gene-phenotype hypotheses, and precisely characterize how genomes evolve.


Subject(s)
Butterflies , Animals , Genome Size , Butterflies/genetics , Genomics , Phenotype , Phylogeny
4.
Nat Commun ; 14(1): 4024, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37419890

ABSTRACT

Changes in the abundance and diversity of neural cell types, and their connectivity, shape brain composition and provide the substrate for behavioral evolution. Although investment in sensory brain regions is understood to be largely driven by the relative ecological importance of particular sensory modalities, how selective pressures impact the elaboration of integrative brain centers has been more difficult to pinpoint. Here, we provide evidence of extensive, mosaic expansion of an integration brain center among closely related species, which is not explained by changes in sites of primary sensory input. By building new datasets of neural traits among a tribe of diverse Neotropical butterflies, the Heliconiini, we detected several major evolutionary expansions of the mushroom bodies, central brain structures pivotal for insect learning and memory. The genus Heliconius, which exhibits a unique dietary innovation, pollen-feeding, and derived foraging behaviors reliant on spatial memory, shows the most extreme enlargement. This expansion is primarily associated with increased visual processing areas and coincides with increased precision of visual processing, and enhanced long term memory. These results demonstrate that selection for behavioral innovation and enhanced cognitive ability occurred through expansion and localized specialization in integrative brain centers.


Subject(s)
Butterflies , Animals , Brain , Learning , Insecta , Mushroom Bodies
5.
Nano Today ; 48: 101729, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36536857

ABSTRACT

Reliable point-of-care (POC) rapid tests are crucial to detect infection and contain the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The emergence of several variants of concern (VOC) can reduce binding affinity to diagnostic antibodies, limiting the efficacy of the currently adopted tests, while showing unaltered or increased affinity for the host receptor, angiotensin converting enzyme 2 (ACE2). We present a graphene field-effect transistor (gFET) biosensor design, which exploits the Spike-ACE2 interaction, the crucial step for SARS-CoV-2 infection. Extensive computational analyses show that a chimeric ACE2-Fragment crystallizable (ACE2-Fc) construct mimics the native receptor dimeric conformation. ACE2-Fc functionalized gFET allows in vitro detection of the trimeric Spike protein, outperforming functionalization with a diagnostic antibody or with the soluble ACE2 portion, resulting in a sensitivity of 20 pg/mL. Our miniaturized POC biosensor successfully detects B.1.610 (pre-VOC), Alpha, Beta, Gamma, Delta, Omicron (i.e., BA.1, BA.2, BA.4, BA.5, BA.2.75 and BQ.1) variants in isolated viruses and patient's clinical nasopharyngeal swabs. The biosensor reached a Limit Of Detection (LOD) of 65 cps/mL in swab specimens of Omicron BA.5. Our approach paves the way for a new and reusable class of highly sensitive, rapid and variant-robust SARS-CoV-2 detection systems.

6.
Genome Res ; 32(10): 1862-1875, 2022 10.
Article in English | MEDLINE | ID: mdl-36109150

ABSTRACT

Despite insertions and deletions being the most common structural variants (SVs) found across genomes, not much is known about how much these SVs vary within populations and between closely related species, nor their significance in evolution. To address these questions, we characterized the evolution of indel SVs using genome assemblies of three closely related Heliconius butterfly species. Over the relatively short evolutionary timescales investigated, up to 18.0% of the genome was composed of indels between two haplotypes of an individual Heliconius charithonia butterfly and up to 62.7% included lineage-specific SVs between the genomes of the most distant species (11 Mya). Lineage-specific sequences were mostly characterized as transposable elements (TEs) inserted at random throughout the genome and their overall distribution was similarly affected by linked selection as single nucleotide substitutions. Using chromatin accessibility profiles (i.e., ATAC-seq) of head tissue in caterpillars to identify sequences with potential cis-regulatory function, we found that out of the 31,066 identified differences in chromatin accessibility between species, 30.4% were within lineage-specific SVs and 9.4% were characterized as TE insertions. These TE insertions were localized closer to gene transcription start sites than expected at random and were enriched for sites with significant resemblance to several transcription factor binding sites with known function in neuron development in Drosophila We also identified 24 TE insertions with head-specific chromatin accessibility. Our results show high rates of structural genome evolution that were previously overlooked in comparative genomic studies and suggest a high potential for structural variation to serve as raw material for adaptive evolution.


Subject(s)
Butterflies , Animals , Butterflies/genetics , Chromatin/genetics , DNA Transposable Elements/genetics , Genomics , INDEL Mutation , Drosophila/genetics , Evolution, Molecular
8.
Mol Biol Evol ; 38(10): 4449-4462, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34146107

ABSTRACT

Major changes in chromosome number and structure are linked to a series of evolutionary phenomena, including intrinsic barriers to gene flow or suppression of recombination due to chromosomal rearrangements. However, chromosome rearrangements can also affect the fundamental dynamics of molecular evolution within populations by changing relationships between linked loci and altering rates of recombination. Here, we build chromosome-level assembly Eueides isabella and, together with a recent chromosome-level assembly of Dryas iulia, examine the evolutionary consequences of multiple chromosome fusions in Heliconius butterflies. These assemblies pinpoint fusion points on 10 of the 20 autosomal chromosomes and reveal striking differences in the characteristics of fused and unfused chromosomes. The ten smallest autosomes in D. iulia and E. isabella, which have each fused to a longer chromosome in Heliconius, have higher repeat and GC content, and longer introns than predicted by their chromosome length. When fused, these characteristics change to become more in line with chromosome length. The fusions also led to reduced diversity, which likely reflects increased background selection and selection against introgression between diverging populations, following a reduction in per-base recombination rate. We further show that chromosome size and fusion impact turnover rates of functional loci at a macroevolutionary scale. Together these results provide further evidence that chromosome fusion in Heliconius likely had dramatic effects on population level processes shaping rates of neutral and adaptive divergence. These effects may have impacted patterns of diversification in Heliconius, a classic example of an adaptive radiation.


Subject(s)
Butterflies , Animals , Biological Evolution , Butterflies/genetics , Chromosomes/genetics , Evolution, Molecular , Genetic Variation
9.
Genome Biol Evol ; 13(7)2021 07 06.
Article in English | MEDLINE | ID: mdl-34117762

ABSTRACT

In butterflies and moths, which exhibit highly variable sex determination mechanisms, the homogametic Z chromosome is deeply conserved and is featured in many genome assemblies. The evolution and origin of the female W sex chromosome, however, remains mostly unknown. Previous studies have proposed that a ZZ/Z0 sex determination system is ancestral to Lepidoptera, and that W chromosomes may originate from sex-linked B chromosomes. Here, we sequence and assemble the female Dryas iulia genome into 32 highly contiguous ordered and oriented chromosomes, including the Z and W sex chromosomes. We then use sex-specific Hi-C, ATAC-seq, PRO-seq, and whole-genome DNA sequence data sets to test if features of the D. iulia W chromosome are consistent with a hypothesized B chromosome origin. We show that the putative W chromosome displays female-associated DNA sequence, gene expression, and chromatin accessibility to confirm the sex-linked function of the W sequence. In contrast with expectations from studies of homologous sex chromosomes, highly repetitive DNA content on the W chromosome, the sole presence of domesticated repetitive elements in functional DNA, and lack of sequence homology with the Z chromosome or autosomes is most consistent with a B chromosome origin for the W, although it remains challenging to rule out extensive sequence divergence. Synteny analysis of the D. iulia W chromosome with other female lepidopteran genome assemblies shows no homology between W chromosomes and suggests multiple, independent origins of the W chromosome from a B chromosome likely occurred in butterflies.


Subject(s)
Butterflies , Moths , Animals , Butterflies/genetics , Female , Genome , Male , Moths/genetics , Sex Chromosomes/genetics , Synteny
10.
Mol Biol Evol ; 38(5): 1966-1979, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33386849

ABSTRACT

SARS-CoV-2 epidemics quickly propagated worldwide, sorting virus genomic variants in newly established propagules of infections. Stochasticity in transmission within and between countries or an actual selective advantage could explain the global high frequency reached by some genomic variants. Using statistical analyses, demographic reconstructions, and molecular dynamics simulations, we show that the globally invasive G614 spike variant 1) underwent a significant demographic expansion in most countries explained neither by stochastic effects nor by overrepresentation in clinical samples, 2) increases the spike S1/S2 furin-like site conformational plasticity (short-range effect), and 3) modifies the internal motion of the receptor-binding domain affecting its cross-connection with other functional domains (long-range effect). Our results support the hypothesis of a selective advantage at the basis of the spread of the G614 variant, which we suggest may be due to structural modification of the spike protein at the S1/S2 proteolytic site, and provide structural information to guide the design of variant-specific drugs.


Subject(s)
COVID-19/genetics , Mutation, Missense , SARS-CoV-2/genetics , Selection, Genetic , Spike Glycoprotein, Coronavirus/genetics , COVID-19/epidemiology , Humans
11.
Mol Biol Evol ; 37(8): 2211-2227, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32181804

ABSTRACT

Understanding how organisms adapt to extreme environments is fundamental and can provide insightful case studies for both evolutionary biology and climate-change biology. Here, we take advantage of the vast diversity of lifestyles in ants to identify genomic signatures of adaptation to extreme habitats such as high altitude. We hypothesized two parallel patterns would occur in a genome adapting to an extreme habitat: 1) strong positive selection on genes related to adaptation and 2) a relaxation of previous purifying selection. We tested this hypothesis by sequencing the high-elevation specialist Tetramorium alpestre and four other phylogenetically related species. In support of our hypothesis, we recorded a strong shift of selective forces in T. alpestre, in particular a stronger magnitude of diversifying and relaxed selection when compared with all other ants. We further disentangled candidate molecular adaptations in both gene expression and protein-coding sequence that were identified by our genome-wide analyses. In particular, we demonstrate that T. alpestre has 1) a higher level of expression for stv and other heat-shock proteins in chill-shock tests and 2) enzymatic enhancement of Hex-T1, a rate-limiting regulatory enzyme that controls the entry of glucose into the glycolytic pathway. Together, our analyses highlight the adaptive molecular changes that support colonization of high-altitude environments.


Subject(s)
Acclimatization/genetics , Ants/genetics , Biological Evolution , Genome, Insect , Selection, Genetic , Animals , Cold Climate , Heat-Shock Proteins/genetics
12.
Prog Biophys Mol Biol ; 141: 3-14, 2019 01.
Article in English | MEDLINE | ID: mdl-30905341

ABSTRACT

Fragile X Mental Retardation Protein (FMRP) is a RNA-binding protein (RBP) known to control different steps of mRNA metabolism, even though its complete function is not fully understood yet. Lack or mutations of FMRP lead to Fragile X Syndrome (FXS), the most common form of inherited intellectual disability and a leading monogenic cause of autism spectrum disorder (ASD). It is well established that FMRP has a multi-domain architecture, a feature that allows this RBP to be engaged in a large interaction network with numerous proteins and mRNAs or non-coding RNAs. Insights into the three-dimensional (3D) structure of parts of its three domains (N-terminus, central domain and C-terminus) were obtained using Nuclear Magnetic Resonance and X-ray diffraction, but the complete 3D arrangement of each domain with respect to the others is still missing. Here, we review the structural features of FMRP and of the network of its protein and RNA interactions. Understanding these aspects is the first necessary step towards the design of novel compounds for new therapeutic interventions in FXS.


Subject(s)
Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/metabolism , Animals , Conserved Sequence , Evolution, Molecular , Fragile X Mental Retardation Protein/chemistry , Humans , Protein Domains , RNA/metabolism
13.
Sci Rep ; 8(1): 3523, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29476172

ABSTRACT

Cerebellar neural stem cells (NSCs) require Hedgehog-Gli (Hh-Gli) signalling for their maintenance and Nanog expression for their self-renewal. To identify novel molecular features of this regulatory pathway, we used next-generation sequencing technology to profile mRNA and microRNA expression in cerebellar NSCs, before and after induced differentiation (Diff-NSCs). Genes with higher transcript levels in NSCs (vs. Diff-NSCs) included Foxm1, which proved to be directly regulated by Gli and Nanog. Foxm1 in turn regulated several microRNAs that were overexpressed in NSCs: miR-130b, miR-301a, and members of the miR-15~16 and miR-17~92 clusters and whose knockdown significantly impaired the neurosphere formation ability. Our results reveal a novel Hh-Gli-Nanog-driven Foxm1-microRNA network that controls the self-renewal capacity of NSCs.


Subject(s)
Cerebellum/metabolism , Forkhead Box Protein M1/genetics , Gene Expression Regulation, Developmental , Nanog Homeobox Protein/genetics , Neural Stem Cells/metabolism , Neurogenesis/genetics , Zinc Finger Protein GLI1/genetics , Animals , Animals, Newborn , Cell Differentiation , Cell Proliferation , Cerebellum/cytology , Cerebellum/growth & development , Forkhead Box Protein M1/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , High-Throughput Nucleotide Sequencing , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Nanog Homeobox Protein/metabolism , Neural Stem Cells/cytology , Primary Cell Culture , Signal Transduction , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Zinc Finger Protein GLI1/metabolism
14.
Mol Phylogenet Evol ; 112: 230-243, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28458014

ABSTRACT

The growing genomic information on non-model organisms eases exploring the evolutionary history of biodiversity. This is particularly true for Drosophila flies, in which the number of sequenced species doubled recently. Because of its outstanding diversity of species, Drosophila has become one of the most important systems to study adaptive radiation. In this study, we performed a genome-wide analysis of positive diversifying selection on more than 2000 single-copy orthologous groups in 25 species using a recent method of increased accuracy for detecting positive diversifying selection. Adopting this novel approach enabled us to find a consistent selection signal throughout the genus Drosophila, and a total of 1342 single-copy orthologous groups were identified with a putative signal of positive diversifying selection, corresponding to 1.9% of all loci. Specifically, in lineages leading to D. grimshawi, a strong putative signal of positive diversifying selection was found related to cell, morphological, neuronal, and sensorial development and function. A recurrent signal of positive diversifying selection was found on genes related to aging and lifespan, suggesting that selection had shaped lifespan diversity in Drosophila, including extreme longevity. Our study, one of the largest and most comprehensive ones on genome-wide positive diversifying selection to date, shows that positive diversifying selection has promoted species-specific differentiation among evolutionary lineages throughout the Drosophila radiation. Acting on the same biological processes via different routes, positive diversifying selection has promoted diversity of functions and adaptive divergence.


Subject(s)
Biological Evolution , Drosophila/genetics , Genetic Variation , Selection, Genetic , Animals , Base Sequence , DNA, Mitochondrial/genetics , Evolution, Molecular , Gene Ontology , Genome, Mitochondrial , Longevity , Phylogeny , Species Specificity , Stress, Physiological , Temperature , Transcriptome/genetics
15.
Sci Rep ; 7: 43770, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28256589

ABSTRACT

Chemoreception is essential for survival. Some chemicals signal the presence of nutrients or toxins, others the proximity of mating partners, competitors, or predators. Chemical signal transduction has therefore been studied in multiple organisms. In Drosophila species, a number of odorant receptor genes and various other types of chemoreceptors were found. Three main gene families encode for membrane receptors and one for globular proteins that shuttle compounds with different degrees of affinity and specificity towards receptors. By sequencing the genome of Drosophila nigrosparsa, a habitat specialist restricted to montane/alpine environment, and combining genomics and structural biology techniques, we characterised odorant, gustatory, ionotropic receptors and odorant binding proteins, annotating 189 loci and modelling the protein structure of two ionotropic receptors and one odorant binding protein. We hypothesise that the D. nigrosparsa genome experienced gene loss and various evolutionary pressures (diversifying positive selection, relaxation, and pseudogenisation), as well as structural modification in the geometry and electrostatic potential of the two ionotropic receptor binding sites. We discuss possible trajectories in chemosensory adaptation processes, possibly enhancing compound affinity and mediating the evolution of more specialized food, and a fine-tuned mechanism of adaptation.


Subject(s)
Drosophila Proteins/genetics , Drosophila/genetics , Genomics/methods , Receptors, Cell Surface/genetics , Receptors, Ionotropic Glutamate/genetics , Receptors, Odorant/genetics , Adaptation, Physiological/genetics , Animals , Drosophila Proteins/classification , Genomic Library , Models, Molecular , Multigene Family/genetics , Phylogeny , Protein Conformation , Receptors, Cell Surface/classification , Receptors, Ionotropic Glutamate/chemistry , Receptors, Ionotropic Glutamate/classification , Receptors, Odorant/chemistry , Receptors, Odorant/classification , Sequence Analysis, DNA/methods
16.
Mol Ecol ; 26(12): 3104-3115, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28139037

ABSTRACT

Using a series of standardized sampling plots within forest ecosystems in remote oceanic islands, we reveal fundamental differences between the structuring of aboveground and belowground arthropod biodiversity that are likely due to large-scale species introductions by humans. Species of beetle and spider were sampled almost exclusively from single islands, while soil-dwelling Collembola exhibited more than tenfold higher species sharing among islands. Comparison of Collembola mitochondrial metagenomic data to a database of more than 80 000 Collembola barcode sequences revealed almost 30% of sampled island species are genetically identical, or near identical, to individuals sampled from often very distant geographic regions of the world. Patterns of mtDNA relatedness among Collembola implicate human-mediated species introductions, with minimum estimates for the proportion of introduced species on the sampled islands ranging from 45% to 88%. Our results call for more attention to soil mesofauna to understand the global extent and ecological consequences of species introductions.


Subject(s)
Arthropods/classification , Biodiversity , DNA, Mitochondrial/genetics , Introduced Species , Metagenomics , Animals , Forests , Islands
17.
Mol Ecol Resour ; 15(4): 1014-5, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26095006

ABSTRACT

This article documents the public availability of (i) raw transcriptome sequence data, assembled contigs and BLAST hits of the Antarctic plant Colobanthus quitensis grown in two different climatic conditions, (ii) the draft genome sequence data (raw reads, assembled contigs and unassembled reads) and RAD-tag read data of the marbled flounder Pseudopleuronectes yokohamae, (iii) transcriptome resources from four white campion (Silene latifolia) individuals from two morphologically divergent populations and (iv) nuclear DNA markers from 454 sequencing of reduced representation libraries (RRL) based on amplified fragment length polymorphism (AFLP) PCR products of four species of ants in the genus Tetramorium.


Subject(s)
Ants/genetics , Caryophyllaceae/genetics , Flounder/genetics , Animals , Genetic Markers , Genome , Transcriptome
18.
Mol Ecol Resour ; 15(1): 228-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25424247

ABSTRACT

This article documents the public availability of (i) transcriptome sequence data, assembly and annotation, and single nucleotide polymorphisms (SNPs) for the cone snail Conus miliaris; (ii) a set of SNP markers for two biotypes from the Culex pipiens mosquito complex; (iii) transcriptome sequence data, assembly and annotation for the mountain fly Drosophila nigrosparsa; (iv) transcriptome sequence data, assembly and annotation and SNPs for the Neotropical toads Rhinella marina and R. schneideri; and (v) partial genomic sequence assembly and annotation for 35 spiny lizard species (Genus Sceloporus).


Subject(s)
Bufonidae/genetics , Conus Snail/genetics , Culex/genetics , Drosophila/genetics , Lizards/genetics , Polymorphism, Single Nucleotide , Transcriptome , Animals , Databases, Chemical
19.
Mol Ecol ; 22(21): 5382-96, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24112308

ABSTRACT

Despite its ancient origin, global distribution and abundance in nearly all habitats, the class Collembola is comprised of only 8000 described species and is estimated to number no more than 50,000. Many morphologically defined species have broad geographical ranges that span continents, and recent molecular work has revealed high genetic diversity within species. However, the evolutionary significance of this genetic diversity is unknown. In this study, we sample five morphological species of the globally distributed genus Lepidocyrtus from 14 Panamanian sampling sites to characterize genetic diversity and test morphospecies against the biological species concept. Mitochondrial and nuclear DNA sequence data were analysed and a total of 58 molecular lineages revealed. Deep lineage diversification was recovered, with 30 molecular lineages estimated to have established more than 10 million years ago, and the origin almost all contemporary lineages preceding the onset of the Pleistocene (~2 Mya). Thirty-four lineages were sampled in sympatry revealing unambiguous cosegregation of mitochondrial and nuclear DNA sequence variation, consistent with biological species. Species richness within the class Collembola and the geographical structure of this diversity are substantially misrepresented components of terrestrial animal biodiversity. We speculate that global species richness of Collembola could be at least an order of magnitude greater than a previous estimate of 50,000 species.


Subject(s)
Arthropods/classification , Biodiversity , Genetic Speciation , Phylogeny , Animals , Arthropods/genetics , Bayes Theorem , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Likelihood Functions , Linkage Disequilibrium , Molecular Sequence Data , Panama , Sequence Analysis, DNA , Sympatry
20.
BMC Genomics ; 14: 124, 2013 Feb 26.
Article in English | MEDLINE | ID: mdl-23442185

ABSTRACT

BACKGROUND: Copy number variations (CNVs) represent a significant source of genomic structural variation. Their length ranges from approximately one hundred to millions of base pair. Genome-wide screenings have clarified that CNVs are a ubiquitous phenomenon affecting essentially the whole genome. Although Bos taurus is one of the most important domestic animal species worldwide and one of the most studied ruminant models for metabolism, reproduction, and disease, relatively few studies have investigated CNVs in cattle and little is known about how CNVs contribute to normal phenotypic variation and to disease susceptibility in this species, compared to humans and other model organisms. RESULTS: Here we characterize and compare CNV profiles in 2654 animals from five dairy and beef Bos taurus breeds, using the Illumina BovineSNP50 genotyping array (54001 SNP probes). In this study we applied the two most commonly used algorithms for CNV discovery (QuantiSNP and PennCNV) and identified 4830 unique candidate CNVs belonging to 326 regions. These regions overlap with 5789 known genes, 76.7% of which are significantly co-localized with segmental duplications (SD). CONCLUSIONS: This large scale screening significantly contributes to the enrichment of the Bos taurus CNV map, demonstrates the ubiquity, great diversity and complexity of this type of genomic variation and sets the basis for testing the influence of CNVs on Bos taurus complex functional and production traits.


Subject(s)
DNA Copy Number Variations , Genome , Algorithms , Animals , Cattle , Comparative Genomic Hybridization , Computational Biology , Genotype , Polymorphism, Single Nucleotide , Segmental Duplications, Genomic , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL