Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
JCO Precis Oncol ; 6: e2200517, 2022 11.
Article in English | MEDLINE | ID: mdl-36370464

ABSTRACT

PURPOSE: Whether germline multigene panel testing (MGPT) should be performed in all individuals with colorectal cancer (CRC) remains uncertain. Therefore, we aimed to determine the yield and potential clinical impact of MGPT across a large, diverse CRC cohort. METHODS: This was a retrospective cohort study of adults with CRC who underwent MGPT of > 10 genes at a commercial laboratory between March 2015 and May 2021. All data were prospectively collected through a single commercial laboratory and retrospectively analyzed. RESULTS: A total of 34,244 individuals with a history of CRC underwent germline MPGT and were included in the analysis. This cohort was predominantly female (60.7%), White (70.6%), and age 50 years or older (68.9%), with 35.5% also reporting a noncolorectal malignancy. At least one pathogenic/likely pathogenic germline variant (PGV) was found in 4,864 (14.2%), with 3,111 (9.1%) having a PGV associated with increased CRC/polyposis risk and 1,048 (3.1%) having an otherwise clinically actionable PGV. Larger gene panels were not clearly associated with higher yield of clinically actionable PGVs. PGVs were more prevalent in individuals of Ashkenazi Jewish descent (P < .001) and Hispanic ethnicity (P < .001). Across all ages, panel sizes, and races/ethnicities, the rate of clinically actionable PGVs on MGPT was 7.9% or greater. A variant of uncertain significance was identified in 13,094 individuals (38.2%). Identification of a variant of uncertain significance associated with panel size (P < .001) and was lower in individuals of Ashkenazi Jewish descent (P < .001), but higher in Black, Asian, and Hispanic individuals (P < .001). CONCLUSION: To our knowledge, this is the largest study to date examining MGPT in CRC, demonstrating high rates of clinically actionable variants detected across all age groups, panel sizes, and racial/ethnic groups. This work supports consideration of broadening germline genetic testing criteria for individuals with CRC.


Subject(s)
Colorectal Neoplasms , Genetic Testing , Adult , Humans , Female , Middle Aged , Male , Retrospective Studies , Colorectal Neoplasms/diagnosis , Asian People , Ethnicity
2.
Genet Med ; 24(11): 2338-2350, 2022 11.
Article in English | MEDLINE | ID: mdl-36107166

ABSTRACT

PURPOSE: Integrating genomic data into the electronic health record (EHR) is key for optimally delivering genomic medicine. METHODS: The PennChart Genomics Initiative (PGI) at the University of Pennsylvania is a multidisciplinary collaborative that has successfully linked orders and results from genetic testing laboratories with discrete genetic data in the EHR. We quantified the use of the genomic data within the EHR, performed a time study with genetic counselors, and conducted key informant interviews with PGI members to evaluate the effect of the PGI's efforts on genetics care delivery. RESULTS: The PGI has interfaced with 4 genetic testing laboratories, resulting in the creation of 420 unique computerized genetic testing orders that have been used 4073 times to date. In a time study of 96 genetic testing activities, EHR use was associated with significant reductions in time spent ordering (2 vs 8 minutes, P < .001) and managing (1 vs 5 minutes, P < .001) genetic results compared with the use of online laboratory-specific portals. In key informant interviews, multidisciplinary collaboration and institutional buy-in were identified as key ingredients for the PGI's success. CONCLUSION: The PGI's efforts to integrate genomic medicine into the EHR have substantially streamlined the delivery of genomic medicine.


Subject(s)
Delivery of Health Care , Electronic Health Records , Humans , Genomics , Laboratories , Software
3.
Article in English | MEDLINE | ID: mdl-31511844

ABSTRACT

PURPOSE: Tumor-only genomic profiling (TGP) is increasingly advocated for all patients with cancer given the possible therapeutic implications. It is critical to develop clinical algorithms to identify and address potentially actionable germline findings identified by TGP. METHODS: A multidisciplinary team analyzed publicly available data for genes in which mutations are implicated in germline cancer susceptibility and established a pipeline to automate clinical referral for evaluation of TGP findings. RESULTS: A total of 2,308 patients underwent TGP, with 81 patients (3.5%) identified by the automatic referral pipeline; 37 patients (1.6%) were referred outside the pipeline based on concerns by the molecular geneticist, pathologist, or oncologist regarding genotype-phenotype correlation. Thirty-one patients (38%) and 17 patients (46%) underwent germline testing from the automatic pipeline and other referrals, respectively, and of these patients, 23 (72%) and four (24%) had confirmed germline pathogenic variants (GPVs), respectively. The majority of confirmed GPVs were in automatic referral genes, with BRCA2 being most common (confirmed GPVs in 11 [85%] of 13 patients tested), followed by PALB2 (five [67%] of six patients), BRCA1 (two [40%] of five patients), MSH6 (two of three patients), and MLH1 (two of two patients). Forty-eight percent of confirmed GPVs were found in tumors known to be associated with germline mutations in the gene. Germline testing was not performed in 50 (62%) of 81 patients identified by automatic referral as a result of poor patient health or death (30%), lack of follow-up (30%), and patient refusal (30%). CONCLUSION: Of patients undergoing TGP, 5% had somatic findings triggering referral, and implementation of an automatic referral pipeline based solely on gene versus other clinical or molecular features resulted in a 74% germline confirmation. However, only 41% of referred patients underwent germline testing. Systems-based approaches are needed to identify carriers of actionable germline cancer susceptibility mutations identified by TGP.

4.
J Natl Cancer Inst ; 110(9): 985-993, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29490071

ABSTRACT

Background: Germline genetic testing is standard practice in oncology. Outcomes of telephone disclosure of a wide range of cancer genetic test results, including multigene panel testing (MGPT) are unknown. Methods: Patients undergoing cancer genetic testing were recruited to a multicenter, randomized, noninferiority trial (NCT01736345) comparing telephone disclosure (TD) of genetic test results with usual care, in-person disclosure (IPD) after tiered-binned in-person pretest counseling. Primary noninferiority outcomes included change in knowledge, state anxiety, and general anxiety. Secondary outcomes included cancer-specific distress, depression, uncertainty, satisfaction, and screening and risk-reducing surgery intentions. To declare noninferiority, we calculated the 98.3% one-sided confidence interval of the standardized effect; t tests were used for secondary subgroup analyses. Only noninferiority tests were one-sided, others were two-sided. Results: A total of 1178 patients enrolled in the study. Two hundred eight (17.7%) participants declined random assignment due to a preference for in-person disclosure; 473 participants were randomly assigned to TD and 497 to IPD; 291 (30.0%) had MGPT. TD was noninferior to IPD for general and state anxiety and all secondary outcomes immediately postdisclosure. TD did not meet the noninferiority threshold for knowledge in the primary analysis, but it did meet the threshold in the multiple imputation analysis. In secondary analyses, there were no statistically significant differences between arms in screening and risk-reducing surgery intentions, and no statistically significant differences in outcomes by arm among those who had MGPT. In subgroup analyses, patients with a positive result had statistically significantly greater decreases in general anxiety with telephone disclosure (TD -0.37 vs IPD +0.87, P = .02). Conclusions: Even in the era of multigene panel testing, these data suggest that telephone disclosure of cancer genetic test results is as an alternative to in-person disclosure for interested patients after in-person pretest counseling with a genetic counselor.


Subject(s)
Genetic Predisposition to Disease , Neoplasms, Germ Cell and Embryonal/epidemiology , Neoplasms, Germ Cell and Embryonal/genetics , Adult , Affect , Biomarkers, Tumor , Cognition , Disclosure , Female , Genetic Counseling , Genetic Testing , Humans , Interviews as Topic , Male , Middle Aged , Neoplasms, Germ Cell and Embryonal/diagnosis , Telephone
SELECTION OF CITATIONS
SEARCH DETAIL