Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(28): e2303648121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38950359

ABSTRACT

Vat photopolymerization (VP) additive manufacturing enables fabrication of complex 3D objects by using light to selectively cure a liquid resin. Developed in the 1980s, this technique initially had few practical applications due to limitations in print speed and final part material properties. In the four decades since the inception of VP, the field has matured substantially due to simultaneous advances in light delivery, interface design, and materials chemistry. Today, VP materials are used in a variety of practical applications and are produced at industrial scale. In this perspective, we trace the developments that enabled this printing revolution by focusing on the enabling themes of light, interfaces, and materials. We focus on these fundamentals as they relate to continuous liquid interface production (CLIP), but provide context for the broader VP field. We identify the fundamental physics of the printing process and the key breakthroughs that have enabled faster and higher-resolution printing, as well as production of better materials. We show examples of how in situ print process monitoring methods such as optical coherence tomography can drastically improve our understanding of the print process. Finally, we highlight areas of recent development such as multimaterial printing and inorganic material printing that represent the next frontiers in VP methods.

2.
Chemistry ; 15(26): 6340-4, 2009 Jun 22.
Article in English | MEDLINE | ID: mdl-19472235

ABSTRACT

Tuning structures: We report a synthetically simple yet structurally rich gelator that self-assembles through hydrogen bonding under different cooling regimes into different nanoscale morphologies (see figure), which can be covalently captured and stabilised by alkene metathesis.

3.
Langmuir ; 25(15): 8786-93, 2009 Aug 04.
Article in English | MEDLINE | ID: mdl-20050049

ABSTRACT

This article reports the covalent capture of self-assembled gel-phase materials using alkene metathesis. Gels assembled from a gelator functionalized with peripheral alkene groups were reacted with Grubbs' second generation catalyst, added as a solution to the top of the gel and allowed to diffuse into the material for 24 h. Using this approach, the fibrillar self-assembled network was covalently captured, yielding a large amount of insoluble material that was robust, thermally stable, and highly swellable in solvents compatible with the gelator. Scanning electron microscopy demonstrated that the insoluble metathesized material contained nanoscale fibers, which were aligned into rigid fiber bundles on drying. When the gelator was assembled in the presence of a second non-cross-linkable gelator, self-sorting took place, giving rise to two independent gelator networks. Metathesis then generated an insoluble material in which the individual gel fibers of the cross-linkable gelator were captured, whereas the nonreactive gelator could be washed away. Intriguingly, using this approach appeared to hinder the alignment of gel fibers into rigid fiber bundles. Instead, individual, well-defined, robust gelator nanofibers were visualized in the dried materials. In addition, the material synthesized this way appeared to be even more highly porous and swellable on the addition of solvent. In summary, this article demonstrates that metathesis is an effective way to capture nanostructured gel-phase materials covalently, with the judicious choice of additives helping to control the morphology and behavior of the materials generated. This approach to nanofabrication could ultimately give rise to nanostructured polymeric materials with a wide range of applications.

4.
J Am Chem Soc ; 130(28): 9113-21, 2008 Jul 16.
Article in English | MEDLINE | ID: mdl-18558681

ABSTRACT

This paper highlights the key role played by solubility in influencing gelation and demonstrates that many facets of the gelation process depend on this vital parameter. In particular, we relate thermal stability ( T gel) and minimum gelation concentration (MGC) values of small-molecule gelation in terms of the solubility and cooperative self-assembly of gelator building blocks. By employing a van't Hoff analysis of solubility data, determined from simple NMR measurements, we are able to generate T calc values that reflect the calculated temperature for complete solubilization of the networked gelator. The concentration dependence of T calc allows the previously difficult to rationalize "plateau-region" thermal stability values to be elucidated in terms of gelator molecular design. This is demonstrated for a family of four gelators with lysine units attached to each end of an aliphatic diamine, with different peripheral groups (Z or Boc) in different locations on the periphery of the molecule. By tuning the peripheral protecting groups of the gelators, the solubility of the system is modified, which in turn controls the saturation point of the system and hence controls the concentration at which network formation takes place. We report that the critical concentration ( C crit) of gelator incorporated into the solid-phase sample-spanning network within the gel is invariant of gelator structural design. However, because some systems have higher solubilities, they are less effective gelators and require the application of higher total concentrations to achieve gelation, hence shedding light on the role of the MGC parameter in gelation. Furthermore, gelator structural design also modulates the level of cooperative self-assembly through solubility effects, as determined by applying a cooperative binding model to NMR data. Finally, the effect of gelator chemical design on the spatial organization of the networked gelator was probed by small-angle neutron and X-ray scattering (SANS/SAXS) on the native gel, and a tentative self-assembly model was proposed.

5.
J Org Chem ; 72(10): 3937-40, 2007 May 11.
Article in English | MEDLINE | ID: mdl-17439286

ABSTRACT

This paper reports the use of a range of amino acids to construct diverse gelators, employing structures in which Boc-protected amino acids are attached to either end of an aliphatic diamine spacer chain. The choice of amino acid determines whether nanoscale self-assembly takes place and controls the properties of the resultant material, while the function of the amino acid (e.g., the optical properties of tryptophan) is translated into the self-assembled nanostructured gel.


Subject(s)
Amino Acids/chemistry , Biomimetic Materials/chemistry , Biomimetic Materials/chemical synthesis , Circular Dichroism , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Molecular Structure , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL