Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Nano ; 18(34): 22609-22619, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39138124

ABSTRACT

The quest for qubit operation at room temperature is accelerating the field of quantum information science and technology. Solid state quantum defects with spin-optical properties are promising spin- and photonic qubit candidates for room temperature operations. In this regard, a single boron vacancy within hexagonal boron nitride (h-BN) lattice such as VB- defect has coherent quantum interfaces for spin and photonic qubits owing to the large band gap of h-BN (6 eV) that can shield a computational subspace from environmental noise. However, for a VB- defect in h-BN to be a potential quantum simulator, the design and characterization of the Hamiltonian involving mutual interactions of the defect and other degrees of freedom are needed to fully understand the effect of defects on the computational subspace. Here, we studied the key coupling tensors such as zero-field splitting, Zeeman effect, and hyperfine splitting in order to build the Hamiltonian of the VB- defect. These eigenstates are spin triplet states that form a computational subspace. To study the phonon-assisted single photon emission in the VB- defect, the Hamiltonian is characterized by electron-phonon interaction with Jahn-Teller distortions. A theoretical demonstration of how the VB- Hamiltonian is utilized to relate these quantum properties to spin- and photonic-quantum information processing. For selecting promising host 2D materials for spin and photonic qubits, we present a data-mining perspective based on the proposed Hamiltonian engineering of the VB- defect in which h-BN is one of four materials chosen to be room temperature qubit candidates.

2.
iScience ; 26(7): 107174, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37485362

ABSTRACT

Understanding the optothermal physics of quantum materials will enable the efficient design of next-generation photonic and superconducting circuits. Anharmonic phonon dynamics is central to strongly interacting optothermal physics. This is because the pressure of a gas of anharmonic phonons is temperature dependent. Phonon-phonon and electron-phonon quantum interactions contribute to the anharmonic phonon effect. Here we have studied the optothermal properties of physically exfoliated WS2 van der Waals crystal via temperature-dependent Raman spectroscopy and machine learning strategies. This fundamental investigation will lead to unveiling the dependence of temperature on in-plane and out-of-plane Raman shifts (Raman thermometry) of WS2 to study the thermal conductivity, hot carrier diffusion coefficient, and thermal expansion coefficient.

SELECTION OF CITATIONS
SEARCH DETAIL