Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Aging (Albany NY) ; 15(16): 7922-7932, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37639552

ABSTRACT

Copy number variations (CNV) are a major contributor to genome variability and have been linked to aging and other degradable phenotypes such as pregnancy physiology. To demonstrate how pregnancy can be used as a model of aging, we used CNVs from pregnant mice. Candidate CNVs were selected by applying case-control analysis in human centenarians compared with control groups. These CNVs were aligned with the mouse genome and their copy variation was assessed using qRT-PCR in liver and blood tissue samples from pregnant mice throughout pregnancy (baseline; first, second, and third trimester; post-partum). Eight of the ten selected CNVs demonstrated a significant decline/increase trend throughout the pregnancy followed by opposite direction soon after delivery in the liver and blood of the mouse tissues. Furthermore, significant differential expression was detected among the candidate CNVs' close vicinity genes (APA2A, LSS, RBDHF1, PLAAT1, and SCL17A2), but not in the WSCD2 gene. Establishing a genetic link between longevity and pregnancy is a significant step toward implementing the pregnancy process as a model for aging. These results in pregnant mice highlight the mechanism and similarities between pregnancy and aging. Investigating the mechanisms that cause such rejuvenation after labor could change our aging treatment paradigm.


Subject(s)
Aging , DNA Copy Number Variations , Aged, 80 and over , Humans , Female , Pregnancy , Animals , Mice , Longevity , Liver , Acyltransferases
2.
Nat Commun ; 12(1): 7185, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34893620

ABSTRACT

The prevalent m6Am mRNA cap modification was recently identified as a valid target for removal by the human obesity gene FTO along with the previously established m6A mRNA modification. However, the deposition and dynamics of m6Am in regulating obesity are unknown. Here, we investigate the liver m6A/m methylomes in mice fed on a high fat Western-diet and in ob/ob mice. We find that FTO levels are elevated in fat mice, and that genes which lost m6Am marking under obesity are overly downregulated, including the two fatty-acid-binding proteins FABP2, and FABP5. Furthermore, the cellular perturbation of FTO correspondingly affect protein levels of its targets. Notably, generally m6Am- but not m6A-methylated genes, are found to be highly enriched in metabolic processes. Finally, we deplete all m6A background via Mettl3 knockout, and unequivocally uncover the association of m6Am methylation with increased mRNA stability, translation efficiency, and higher protein expression. Together, these results strongly implicate a dynamic role for m6Am in obesity-related translation regulation.


Subject(s)
Adenosine/analogs & derivatives , Adenosine/metabolism , Obesity/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Animals , Diet, Western , Epigenomics , Fatty Acid-Binding Proteins/metabolism , Male , Methylation , Mice , Mice, Inbred C57BL , Neoplasm Proteins , RNA Stability , RNA, Messenger/metabolism
3.
Nat Metab ; 2(11): 1305-1315, 2020 11.
Article in English | MEDLINE | ID: mdl-33139959

ABSTRACT

A long-standing model holds that stochastic aberrations of transcriptional regulation play a key role in the process of ageing. While transcriptional dysregulation is observed in many cell types in the form of increased cell-to-cell variability, its generality to all cell types remains doubted. Here, we propose a new approach for analysing transcriptional regulation in single-cell RNA sequencing data by focusing on the global coordination between the genes rather than the variability of individual genes or correlations between pairs of genes. Consistently, across very different organisms and cell types, we find a decrease in the gene-to-gene transcriptional coordination in ageing cells. In addition, we find that loss of gene-to-gene transcriptional coordination is associated with high mutational load of a specific, age-related signature and with radiation-induced DNA damage. These observations suggest a general, potentially universal, stochastic attribute of transcriptional dysregulation in ageing.


Subject(s)
Aging/genetics , Transcription, Genetic/genetics , Animals , DNA Damage , Drosophila , Gene Regulatory Networks , Humans , Mice , Mice, Inbred C57BL , Models, Genetic , Mutation/genetics , Sequence Analysis, RNA , Stochastic Processes , Transcription, Genetic/radiation effects
4.
Exp Gerontol ; 137: 110952, 2020 08.
Article in English | MEDLINE | ID: mdl-32344118

ABSTRACT

BACKGROUND: Aging is defined as a biological and physical complex process that is characterized by the increase in susceptibility to diseases and eventually death. Aging may occur at different rates between and within species, especially or (it varies) among the long-lived ones. Here, we ask whether this diversity (e.g. aging phenotype) stems from genetic or environmental factors or as a combination between the two (epigenetics). Epigenetics play a central role in controlling changes in gene expression during aging. DNA methylation is the most abundant epigenetic modification among vertebrates and is essential to mammalian development. MATERIALS AND METHODS: In this study, we utilized the HELPtag assay to identify five candidate genes that were significantly hyper- or hypo-methylated across four different age groups in mice. The candidate genes were annotated using ensemble and their expression was further tested in vitro using the murine RAW 264.7 cell line to examine the effect of three environmental stressors (UV radiation, Hypoxia and fasting) on their expression. RNA was extracted at different time points followed by cDNA synthesis. Changes in gene expression were evaluated using qRT-PCR. RESULTS: We show that fasting and UV radiation reduced the viability of RAW264.7 cells. We also found a significant change in three candidate genes' expression levels during fasting (TOP2B, RNF13 and MRPL4). Furthermore, we found a significant change in the four candidate genes' expression levels following UVC treatment (TOP2B, RNF13, PKNOX1 and CREB5) and yet no changes were recorded in hypoxic conditions. CONCLUSION: Our results suggest that the model we used was a fitting model for the assessment of environmental stressors on candidate gene expression. In addition, we established a cellular response to the environment via changes in gene expression.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Aging/genetics , Animals , Epigenomics , Homeodomain Proteins , Mice , Phenotype
5.
Cell Rep ; 29(12): 4127-4143.e8, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31851938

ABSTRACT

The pro-longevity enzyme SIRT6 regulates various metabolic pathways. Gene expression analyses in SIRT6 heterozygotic mice identify significant decreases in PPARα signaling, known to regulate multiple metabolic pathways. SIRT6 binds PPARα and its response element within promoter regions and activates gene transcription. Sirt6+/- results in significantly reduced PPARα-induced ß-oxidation and its metabolites and reduced alanine and lactate levels, while inducing pyruvate oxidation. Reciprocally, starved SIRT6 transgenic mice show increased pyruvate, acetylcarnitine, and glycerol levels and significantly induce ß-oxidation genes in a PPARα-dependent manner. Furthermore, SIRT6 mediates PPARα inhibition of SREBP-dependent cholesterol and triglyceride synthesis. Mechanistically, SIRT6 binds PPARα coactivator NCOA2 and decreases liver NCOA2 K780 acetylation, which stimulates its activation of PPARα in a SIRT6-dependent manner. These coordinated SIRT6 activities lead to regulation of whole-body respiratory exchange ratio and liver fat content, revealing the interactions whereby SIRT6 synchronizes various metabolic pathways, and suggest a mechanism by which SIRT6 maintains healthy liver.


Subject(s)
Liver/metabolism , PPAR alpha/metabolism , Sirtuins/metabolism , Acetylation , Animals , Blotting, Western , Cells, Cultured , HEK293 Cells , Humans , Immunoprecipitation , Male , Mice , Mice, Transgenic , Nuclear Receptor Coactivator 2/genetics , Nuclear Receptor Coactivator 2/metabolism , Oxidation-Reduction , PPAR alpha/genetics , Sirtuins/genetics
6.
Cell Metab ; 29(4): 871-885.e5, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30853213

ABSTRACT

Mice deficient for SIRT6 exhibit a severely shortened lifespan, growth retardation, and highly elevated LINE1 (L1) activity. Here we report that SIRT6-deficient cells and tissues accumulate abundant cytoplasmic L1 cDNA, which triggers strong type I interferon response via activation of cGAS. Remarkably, nucleoside reverse-transcriptase inhibitors (NRTIs), which inhibit L1 retrotransposition, significantly improved health and lifespan of SIRT6 knockout mice and completely rescued type I interferon response. In tissue culture, inhibition of L1 with siRNA or NRTIs abrogated type I interferon response, in addition to a significant reduction of DNA damage markers. These results indicate that L1 activation contributes to the pathologies of SIRT6 knockout mice. Similarly, L1 transcription, cytoplasmic cDNA copy number, and type I interferons were elevated in the wild-type aged mice. As sterile inflammation is a hallmark of aging, we propose that modulating L1 activity may be an important strategy for attenuating age-related pathologies.


Subject(s)
Inflammation/metabolism , RNA-Binding Proteins/metabolism , Sirtuins/metabolism , Age Factors , Animals , Dideoxynucleotides/administration & dosage , Dideoxynucleotides/pharmacology , Female , Male , Mice , Mice, Inbred Strains , Mice, Knockout , RNA-Binding Proteins/antagonists & inhibitors , Sirtuins/deficiency , Stavudine/administration & dosage , Stavudine/pharmacology , Thymine Nucleotides/administration & dosage , Thymine Nucleotides/pharmacology , Zidovudine/administration & dosage , Zidovudine/analogs & derivatives , Zidovudine/pharmacology
7.
Nature ; 560(7720): 559-560, 2018 08.
Article in English | MEDLINE | ID: mdl-30143756
8.
Sci Rep ; 8(1): 3538, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29476161

ABSTRACT

Mammalian SIRT6 is a well-studied histone deacetylase that was recently shown to exhibit high protein deacylation activity enabling the removal of long chain fatty acyl groups from proteins. SIRT6 was shown to play key roles in cellular homeostasis by regulating a variety of cellular processes including DNA repair and glucose metabolism. However, the link between SIRT6 enzymatic activities and its cellular functions is not clear. Here, we utilized a directed enzyme evolution approach to generate SIRT6 mutants with improved deacylation activity. We found that while two mutants show increased deacylation activity at high substrate concentration and improved glucose metabolism they exhibit no improvement and even abolished deacetylation activity on H3K9Ac and H3K56Ac in cells. Our results demonstrate the separation of function between SIRT6 catalytic activities and suggest that SIRT6 deacylation activity in cells is important for glucose metabolism and can be mediated by still unknown acylated cellular proteins.


Subject(s)
Directed Molecular Evolution/methods , Glucose/metabolism , Histones/chemistry , Protein Engineering/methods , Sirtuins/chemistry , Tumor Necrosis Factor-alpha/chemistry , Acylation , Animals , Binding Sites , Biocatalysis , Gene Library , HEK293 Cells , Histones/genetics , Histones/metabolism , Homeostasis/genetics , Humans , Hydrolysis , Kinetics , Models, Molecular , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Sirtuins/deficiency , Sirtuins/genetics , Substrate Specificity , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
9.
J Gerontol A Biol Sci Med Sci ; 73(11): 1465-1471, 2018 10 08.
Article in English | MEDLINE | ID: mdl-29121176

ABSTRACT

While average human life expectancy has increased dramatically in the last century, the maximum life span has only modestly increased. These observations prompted the notion that human life span might have reached its maximal natural limit of ~115 years. To evaluate this hypothesis, we conducted a systematic analysis of all-cause human mortality throughout the 20th century. Our analyses revealed that, once cause of death is accounted for, there is a proportional increase in both median age of death and maximum life span. To examine whether pathway targeted aging interventions affected both median and maximum life span, we analyzed hundreds of interventions performed in multiple organisms (yeast, worms, flies, and rodents). Three criteria: median, maximum, and last survivor life spans were all significantly extended, and to a similar extent. Altogether, these findings suggest that targeting the biological/genetic causes of aging can allow breaking the currently observed ceiling of human maximal life span.


Subject(s)
Life Expectancy , Longevity , Aging , Animals , Cause of Death/trends , Databases, Factual , Drug Therapy , Genomics , Humans , Nutritional Physiological Phenomena
10.
PLoS One ; 12(6): e0179681, 2017.
Article in English | MEDLINE | ID: mdl-28644902

ABSTRACT

Sirtuins are pleiotropic NAD+ dependent histone deacetylases involved in metabolism, DNA damage repair, inflammation and stress resistance. SIRT6, a member of the sirtuin family, regulates the process of normal aging and increases the lifespan of male mice over-expressing Sirt6 by 15%. Neurogenesis, the formation of new neurons within the hippocampus of adult mammals, involves several complex stages including stem cell proliferation, differentiation, migration and network integration. During aging, the number of newly generated neurons continuously declines, and this is correlated with a decline in neuronal plasticity and cognitive behavior. In this study we investigated the involvement of SIRT6 in adult hippocampal neurogenesis. Mice over-expressing Sirt6 exhibit increased numbers of young neurons and decreased numbers of mature neurons, without affecting glial differentiation. This implies of an involvement of SIRT6 in neuronal differentiation and maturation within the hippocampus. This work adds to the expanding body of knowledge on the regulatory mechanisms underlying adult hippocampal neurogenesis, and describes novel roles for SIRT6 as a regulator of cell fate during adult hippocampal neurogenesis.


Subject(s)
Hippocampus/metabolism , Neurogenesis/physiology , Neurons/metabolism , Sirtuins/metabolism , Analysis of Variance , Animals , Astrocytes/cytology , Astrocytes/metabolism , Blotting, Western , Bromodeoxyuridine , Cell Count , Cerebral Cortex/cytology , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , DNA-Binding Proteins , Doublecortin Domain Proteins , Fluorescent Antibody Technique , Hippocampus/cytology , Hippocampus/growth & development , Male , Mice, Inbred C57BL , Mice, Transgenic , Microtubule-Associated Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neuropeptides/metabolism , Nuclear Proteins/metabolism , Organ Size , S100 Calcium Binding Protein beta Subunit/metabolism , Sirtuins/genetics
11.
J Am Heart Assoc ; 6(5)2017 May 20.
Article in English | MEDLINE | ID: mdl-28528324

ABSTRACT

BACKGROUND: The immune system plays a pivotal role in myocardial homeostasis and response to injury. Interleukins-4 and -13 are anti-inflammatory type-2 cytokines, signaling via the common interleukin-13 receptor α1 chain and the type-2 interleukin-4 receptor. The role of interleukin-13 receptor α1 in the heart is unknown. METHODS AND RESULTS: We analyzed myocardial samples from human donors (n=136) and patients with end-stage heart failure (n=177). We found that the interleukin-13 receptor α1 is present in the myocardium and, together with the complementary type-2 interleukin-4 receptor chain Il4ra, is significantly downregulated in the hearts of patients with heart failure. Next, we showed that Il13ra1-deficient mice develop severe myocardial dysfunction and dyssynchrony compared to wild-type mice (left ventricular ejection fraction 29.7±9.9 versus 45.0±8.0; P=0.004, left ventricular end-diastolic diameter 4.2±0.2 versus 3.92±0.3; P=0.03). A bioinformatic analysis of mouse hearts indicated that interleukin-13 receptor α1 regulates critical pathways in the heart other than the immune system, such as extracellular matrix (normalized enrichment score=1.90; false discovery rate q=0.005) and glucose metabolism (normalized enrichment score=-2.36; false discovery rate q=0). Deficiency of Il13ra1 was associated with reduced collagen deposition under normal and pressure-overload conditions. CONCLUSIONS: The results of our studies in humans and mice indicate, for the first time, a role of interleukin-13 receptor α1 in myocardial homeostasis and heart failure and suggests a new therapeutic target to treat heart disease.


Subject(s)
Gene Expression Regulation , Heart Failure/genetics , Homeostasis , Interleukin-13 Receptor alpha1 Subunit/genetics , Myocardium/metabolism , RNA/genetics , Animals , Blotting, Western , Heart Failure/metabolism , Heart Failure/pathology , Humans , Interleukin-13 Receptor alpha1 Subunit/biosynthesis , Mice , Myocardium/pathology , Real-Time Polymerase Chain Reaction , Signal Transduction , Ventricular Remodeling
12.
PLoS One ; 12(4): e0176371, 2017.
Article in English | MEDLINE | ID: mdl-28448551

ABSTRACT

The NAD+-dependent SIRT6 deacetylase was shown to be a major regulator of lifespan and healthspan. Mice deficient for SIRT6 develop a premature aging phenotype and metabolic defects, and die before four weeks of age. Thus, the effect of SIRT6 deficiency in adult mice is unknown. Here we show that SIRT6-/- mice in mixed 129/SvJ/BALB/c background reach adulthood, allowing examination of SIRT6-related metabolic and developmental phenotypes in adult mice. In this mixed background, at 200 days of age, more than 80% of the female knock-out mice were alive whereas only 10% of male knock-out mice survived. In comparison to their wild-type littermates, SIRT6 deficient mice have reduced body weight, increased glucose uptake and exhibit an age-dependent progressive impairment of retinal function accompanied by thinning of retinal layers. Together, these results demonstrate a role for SIRT6 in metabolism and age-related ocular changes in adult mice and suggest a gender specific regulation of lifespan by SIRT6.


Subject(s)
Gene Knockout Techniques , Sirtuins/deficiency , Sirtuins/genetics , Adiposity/genetics , Aging/genetics , Aging/metabolism , Animals , Biological Transport/genetics , Body Weight/genetics , Female , Glucose/metabolism , Male , Mice , Phenotype
13.
J Gerontol A Biol Sci Med Sci ; 72(5): 603-615, 2017 May 01.
Article in English | MEDLINE | ID: mdl-27519885

ABSTRACT

The extension in human lifespan in the last century results in a significant increase in incidence of age related diseases. It is therefore crucial to identify key factors that control elderly healthspan. Similar to dietary restriction, mice overexpressing the NAD+ dependent protein deacylase SIRT6 (MOSES) live longer and have reduced IGF-1 levels. However, it is as yet unknown whether SIRT6 also affects various healthspan parameters. Here, a range of age related phenotypes was evaluated in MOSES mice. In comparison to their wild-type (WT) littermates, old MOSES mice showed amelioration of a variety of age-related disorders, including: improved glucose tolerance, younger hormonal profile, reduced age-related adipose inflammation and increased physical activity. The increased activity was accompanied with increased muscle AMP-activated protein kinase (AMPK) activity. Altogether, these results indicate that overexpression of SIRT6 in mice retards important aspects of the aging process and suggest SIRT6 to be a potential therapeutic target for the treatment of a set of age-related disorders.


Subject(s)
Aging/metabolism , Blood Chemical Analysis , Longevity , Sirtuins/metabolism , Animals , Body Composition , Calorimetry, Indirect , DNA/analysis , Gene Expression , Glucose Tolerance Test , Hair/growth & development , Immunoblotting , Immunohistochemistry , Insulin-Like Growth Factor I/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microarray Analysis , Phenotype , RNA/analysis , Real-Time Polymerase Chain Reaction , Up-Regulation , Wound Healing/physiology
14.
Chemistry ; 22(40): 14236-46, 2016 Sep 26.
Article in English | MEDLINE | ID: mdl-27539220

ABSTRACT

Many peptides and proteins with large sequences and structural differences self-assemble into disease-causing amyloids that share very similar biochemical and biophysical characteristics, which may contribute to their cross-interaction. Here, we demonstrate how the self-assembled, cyclic d,l-α-peptide CP-2, which has similar structural and functional properties to those of amyloids, acts as a generic inhibitor of the Parkinson's disease associated α-synuclein (α-syn) aggregation to toxic oligomers by an "off-pathway" mechanism. We show that CP-2 interacts with the N-terminal and the non-amyloid-ß component region of α-syn, which are responsible for α-syn's membrane intercalation and self-assembly, thus changing the overall conformation of α-syn. CP-2 also remodels α-syn fibrils to nontoxic amorphous species and permeates cells through endosomes/lysosomes to reduce the accumulation and toxicity of intracellular α-syn in neuronal cells overexpressing α-syn. Our studies suggest that targeting the common structural conformation of amyloids may be a promising approach for developing new therapeutics for amyloidogenic diseases.


Subject(s)
Parkinson Disease/drug therapy , Peptides, Cyclic/pharmacology , Protein Aggregates/drug effects , Protein Aggregation, Pathological/drug therapy , alpha-Synuclein/metabolism , Amyloid/metabolism , Amyloid/ultrastructure , Animals , Humans , Neurons/drug effects , Neurons/metabolism , PC12 Cells , Parkinson Disease/metabolism , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacokinetics , Protein Aggregation, Pathological/metabolism , Rats , alpha-Synuclein/ultrastructure
15.
Cell Rep ; 14(2): 234-42, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26748705

ABSTRACT

Mice overexpressing the longevity protein SIRT6 or deficient for the liver's most prevalent microRNA miR-122 display a similar set of phenotypes, including improved lipid profile and protection against damage linked to obesity. Here, we show that miR-122 and SIRT6 negatively regulate each other's expression. SIRT6 downregulates miR-122 by deacetylating H3K56 in the promoter region. MiR-122 binds to three sites on the SIRT6 3' UTR and reduces its levels. The interplay between SIRT6 and miR-122 is manifested in two physiologically relevant ways in the liver. First, they oppositely regulate a similar set of metabolic genes and fatty acid ß-oxidation. Second, in hepatocellular carcinoma patients, loss of a negative correlation between SIRT6 and miR-122 expression is significantly associated with better prognosis. These findings show that SIRT6 and miR-122 negatively regulate each other to control various aspects of liver physiology and SIRT6-miR-122 correlation may serve as a biomarker for hepatocarcinoma prognosis.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Liver/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Sirtuins/genetics , Sirtuins/metabolism , Animals , Carcinoma, Hepatocellular/pathology , Fatty Acids/metabolism , Humans , Liver Neoplasms/pathology , Mice , Oxidation-Reduction , Prognosis
16.
Carcinogenesis ; 37(2): 108-18, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26717993

ABSTRACT

SIRT6, a member of the mammalian sirtuins family, functions as a mono-ADP-ribosyl transferase and NAD(+)-dependent deacylase of both acetyl groups and long-chain fatty acyl groups. SIRT6 regulates diverse cellular functions such as transcription, genome stability, telomere integrity, DNA repair, inflammation and metabolic related diseases such as diabetes, obesity and cancer. In this review, we will discuss the implication of SIRT6 in the biology of cancer and the relevance to organism homeostasis and lifespan.


Subject(s)
Carcinogenesis , Longevity/physiology , Neoplasms/physiopathology , Sirtuins/physiology , Animals , Homeostasis/physiology , Humans
17.
Nat Immunol ; 16(7): 737-45, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26006015

ABSTRACT

Aire is a transcriptional regulator that induces the promiscuous expression of thousands of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs), a step critical for the induction of immunological self-tolerance. Studies have offered molecular insights into how Aire operates, but more comprehensive understanding of this process still remains elusive. Here we found abundant expression of the protein deacetylase Sirtuin-1 (Sirt1) in mature Aire(+) mTECs, wherein it was required for the expression of Aire-dependent TRA-encoding genes and the subsequent induction of immunological self-tolerance. Our study elucidates a previously unknown molecular mechanism for Aire-mediated transcriptional regulation and identifies a unique function for Sirt1 in preventing organ-specific autoimmunity.


Subject(s)
Central Tolerance/immunology , Sirtuin 1/immunology , Transcription Factors/immunology , Transcriptional Activation/immunology , Acetylation , Animals , Antigens/immunology , Central Tolerance/genetics , Epithelial Cells/immunology , Epithelial Cells/metabolism , Flow Cytometry , HEK293 Cells , Humans , Immunoblotting , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Organ Specificity/immunology , Protein Binding/immunology , Reverse Transcriptase Polymerase Chain Reaction , Sirtuin 1/genetics , Sirtuin 1/metabolism , Thymus Gland/cytology , Thymus Gland/immunology , Thymus Gland/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome/immunology , AIRE Protein
18.
Exp Cell Res ; 330(1): 81-90, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25066211

ABSTRACT

Sirtuin 6 (SIRT6) is a protein associated with prolonged life expectancy. We investigated whether life extension is associated with cardioprotection against hypoxia. The proposed study is to develop approaches to reduce hypoxic damage through the use of the sirtuin pathway and to elucidate the mechanism involved. For that purpose we subjected cardiomyocytes from transgenic mice (TG) with over-expression of SIRT6, to hypoxic stress in cell cultures. We hypothesized that cardiomyocytes from transgenic mice subjected to prolonged hypoxia may release survival factors or fewer damage markers to protect them from hypoxic stress compared with wild type (WT) mice. Lactate dehydrogenase (LDH) and creatine kinase (CK) released to the medium and propidium iodide (PI) binding, were markedly decreased following hypoxia in TG cardiomyocytes. The protective mechanism of SIRT6 over-expression includes the activation of pAMPKα pathway, the increased protein level of B-cell lymphoma 2 (Bcl2), the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), the decrease of reactive oxygen species (ROS) and the reduction in the protein level of phospho-protein kinase B (pAkt) during hypoxia. Together, all these processes impede the necrosis/apoptosis pathways leading to the improved survival of cardiomyocytes following hypoxia, which might explain life extension.


Subject(s)
Apoptosis , Myocytes, Cardiac/metabolism , Sirtuins/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Cell Hypoxia , Cells, Cultured , Mice , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism , Sirtuins/genetics
19.
Nucleic Acids Res ; 43(3): e20, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25428368

ABSTRACT

Identifying conserved and divergent response patterns in gene networks is becoming increasingly important. A common approach is integrating expression information with gene association networks in order to find groups of connected genes that are activated or repressed. In many cases, researchers are also interested in comparisons across species (or conditions). Finding an active sub-network is a hard problem and applying it across species requires further considerations (e.g. orthology information, expression data and networks from different sources). To address these challenges we devised ModuleBlast, which uses both expression and network topology to search for highly relevant sub-networks. We have applied ModuleBlast to expression and interaction data from mouse, macaque and human to study immune response and aging. The immune response analysis identified several relevant modules, consistent with recent findings on apoptosis and NFκB activation following infection. Temporal analysis of these data revealed cascades of modules that are dynamically activated within and across species. We have experimentally validated some of the novel hypotheses resulting from the analysis of the ModuleBlast results leading to new insights into the mechanisms used by a key mammalian aging protein.


Subject(s)
Gene Regulatory Networks , Aging/genetics , Animals , Apoptosis , Humans , Macaca , Mice , Species Specificity
20.
J Gerontol A Biol Sci Med Sci ; 70(4): 444-53, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24835838

ABSTRACT

Regulation of life span by members of the forkhead transcription factor family of proteins is one of the most highly investigated pathways in the field of aging. Nevertheless, despite the existence of forkhead family homologues in yeast, our knowledge of these proteins' role in yeast longevity is limited. Here, we show that yeast Hcm1p forkhead is the closest homologue of the worm PHA-4 forkhead, which regulates Caenorhabditis elegans life span. Overexpressing the yeast forkhead HCM1 or its deficiency resulted in a significant extension or reduction in yeast replicative life span, respectively. HCM1 regulates stress resistance, significantly increases the mRNA levels of several stress response genes including the catalase enzymes CTA1 and CTT1, and positively regulates life span independently of calorie restriction. Thus, HCM1 is a key regulator of life span, through a mechanism independent of calorie restriction.


Subject(s)
Caloric Restriction , Forkhead Transcription Factors/genetics , Longevity/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Catalase/genetics , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL