Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Arch Microbiol ; 206(1): 35, 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38141073

ABSTRACT

Interest in Antarctic fungi has grown due to their resilience in harsh environments, suggesting the presence of valuable compounds from its organisms, such as those presenting photoprotective potential, since this environment suffers the most dangerous UV exposure in the world. Therefore, this research aimed to assess the photoprotective potential of compounds from sustainable marine sources, specifically seaweed-derived fungi from Antarctic continent. These studies led to discovery of photoprotective and antioxidant properties of metabolites from Arthrinium sp., an endophytic fungus from Antarctic brown algae Phaeurus antarcticus. From crude extract, fractions A-I were obtained and compounds 1-6 isolated from E and F fractions, namely 3-Hydroxybenzyl alcohol (1), (-)-orthosporin (2), norlichexanthone (3), anomalin B (4), anomalin A (5), and agonodepside B (6). Compounds 1, 2, and 6 were not previously reported in Arthrinium. Fraction F demonstrated excellent absorbance in both UVA and UVB regions, while compound 6 exhibited lower UVB absorbance, possibly due to synergistic effects. Fraction F and compound 6 displayed photostability and were non-phototoxic to HaCaT cells. They also exhibited antioxidant activity by reducing intracellular ROS production induced by UVA in keratinocyte monolayers and reconstructed human skin models (resulting in 34.6% and 30.2% fluorescence reduction) and did not show irritation potential in HET-CAM assay. Thus, both are promising candidates for use in sunscreens. It is noted that Fraction F does not require further purification, making it advantageous, although clinical studies are necessary to confirm its potential applicability for sunscreen formulations.


Subject(s)
Ultraviolet Rays , Xylariales , Humans , Sunscreening Agents/pharmacology , Sunscreening Agents/chemistry , Skin , Antioxidants/pharmacology , Antioxidants/metabolism
2.
Fitoterapia ; 171: 105686, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37748714

ABSTRACT

The chemical composition of V. pyrantha resin (VpR) and fractions (VpFr1-7 and VpWS) were assessed by LC-MS and NMR. Twenty-eight metabolites were identified, including 16 diterpenoids, seven nor-diterpenoids, one fatty acid, one bis-diterpenoid, one steroid, one flavonoid, and one triterpenoid. The pharmacological potential of VpR, VpFr1-7, and isolated compounds was assessed by determining their antioxidant, antimicrobial, and cytotoxic activities. VpFr4 (IC50 = 205.48 ± 3.37 µg.mL-1) had the highest antioxidant activity, whereas VpFr6 (IC50 = 842.79 ± 10.23 µg.mL-1) had the lowest. The resin was only active against Staphylococcus aureus (MIC 62.5 µg.mL-1) and Salmonella choleraesius (MIC and MFC 500 µg.mL-1), but fractions were enriched with antibacterial compounds. V. pyrantha resin and fractions showed great cytotoxic activity against HCT116 (IC50 = 20.08 µg.mL-1), HepG2 (IC50 = 20.50 µg.mL-1), and B16-F10 (12.17 µg.mL-1) cell lines. Multivariate statistical analysis was used as a powerful tool to pinpoint possible metabolites responsible for the observed activities.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Diterpenes , Plant Extracts/chemistry , Molecular Structure , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Diterpenes/pharmacology
3.
Mar Drugs ; 20(2)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35200640

ABSTRACT

Schistosomiasis has been controlled for more than 40 years with a single drug, praziquantel, and only one molluscicide, niclosamide, raising concern of the possibility of the emergence of resistant strains. However, the molecular targets for both agents are thus far unknown. Consequently, the search for lead compounds from natural sources has been encouraged due to their diverse structure and function. Our search for natural compounds with potential use in schistosomiasis control led to the identification of an algal species, Laurencia dendroidea, whose extracts demonstrated significant activity toward both Schistosoma mansoni parasites and their intermediate host snails Biomphalaria glabrata. In the present study, three seaweed-derived halogenated sesquiterpenes, (-)-elatol, rogiolol, and obtusol are proposed as potential lead compounds for the development of anthelminthic drugs for the treatment of and pesticides for the environmental control of schistosomiasis. The three compounds were screened for their antischistosomal and molluscicidal activities. The screening revealed that rogiolol exhibits significant activity toward the survival of adult worms, and that all three compounds showed activity against S. mansoni cercariae and B. glabrata embryos. Biomonitored fractioning of L. dendroidea extracts indicated elatol as the most active compound toward cercariae larvae and snail embryos.


Subject(s)
Anthelmintics , Laurencia , Molluscacides , Sesquiterpenes , Animals , Anthelmintics/isolation & purification , Anthelmintics/pharmacology , Larva , Laurencia/chemistry , Molluscacides/isolation & purification , Molluscacides/pharmacology , Schistosoma mansoni/drug effects , Schistosomiasis/drug therapy , Sesquiterpenes/isolation & purification , Sesquiterpenes/pharmacology , Spiro Compounds/isolation & purification , Spiro Compounds/pharmacology
4.
J Phycol ; 58(3): 406-423, 2022 06.
Article in English | MEDLINE | ID: mdl-35090189

ABSTRACT

Gracilariales is a clade of florideophycean red macroalgae known for being the main source of agar. We present a de novo genome assembly and annotation of Gracilaria domingensis, an agarophyte alga with flattened thallus widely distributed along Central and South American Atlantic intertidal zones. In addition to structural analysis, an organizational comparison was done with other Rhodophyta genomes. The nuclear genome has 78 Mbp, with 11,437 predicted coding genes, 4,075 of which did not have hits in sequence databases. We also predicted 1,567 noncoding RNAs, distributed in 14 classes. The plastid and mitochondrion genome structures were also obtained. Genes related to agar synthesis were identified. Genes for type II galactose sulfurylases could not be found. Genes related to ascorbate synthesis were found. These results suggest an intricate connection of cell wall polysaccharide synthesis and the redox systems through the use of L-galactose in Rhodophyta. The genome of G. domingensis should be valuable to phycological and aquacultural research, as it is the first tropical and Western Atlantic red macroalgal genome to be sequenced.


Subject(s)
Genome, Mitochondrial , Gracilaria , Rhodophyta , Agar/metabolism , Galactose/metabolism , Gracilaria/genetics , Rhodophyta/genetics , Rhodophyta/metabolism
5.
Biota Neotrop. (Online, Ed. ingl.) ; 22(spe): e20221345, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1394011

ABSTRACT

Abstract The present review aims the discussion of the impact of the bioprospection initiative developed by the projects associated to BIOprospecTA, a subprogram of the program BIOTA, supported by FAPESP. This review brings a summary of the main results produced by the projects investigating natural products (NPs) from non-plants organisms, as examples of the success of this initiative, focusing on the progresses achieved by the projects related to NPs from macroalgae, marine invertebrates, arthropods and associated microorganisms. Macroalgae are one of the most studied groups in Brazil with the isolation of many bioactive compounds including lipids, carotenoids, phycocolloids, lectins, mycosporine-like amino acids and halogenated compounds. Marine invertebrates and associated microorganisms have been more systematically studied in the last thirty years, revealing unique compounds, with potent biological activities. The venoms of Hymenopteran insects were also extensively studied, resulting in the identification of hundreds of peptides, which were used to create a chemical library that contributed for the identification of leader models for the development of antifungal, antiparasitic, and anticancer compounds. The built knowledge of Hymenopteran venoms permitted the development of an equine hyperimmune serum anti honeybee venom. Amongst the microorganisms associated with insects the bioprospecting strategy was to understand the molecular basis of intra- and interspecies interactions (Chemical Ecology), translating this knowledge to possible biotechnological applications. The results discussed here reinforce the importance of BIOprospecTA program on the development of research with highly innovative potential in Brazil.


Resumo A presente revisão discute o impacto das iniciativas de bioprospecção desenvolvidas pelos projetos associados ao BIOprospecTA, subprograma do programa BIOTA, apoiado pela FAPESP. Esta revisão traz um resumo dos principais resultados produzidos pelos projetos de investigação de produtos naturais (PNs) de organismos não vegetais, como exemplos do sucesso desta iniciativa, com foco nos avanços alcançados pelos projetos relacionados a PNs de macroalgas, invertebrados marinhos, artrópodes e microrganismos associados. As macroalgas são um dos grupos mais estudados no Brasil com o isolamento de muitas substâncias bioativas, incluindo lipídios, carotenóides, ficocolóides, lectinas, aminoácidos do tipo micosporina e substâncias halogenadas. Invertebrados marinhos e microrganismos associados têm sido estudados de forma mais sistemática nos últimos trinta anos, revelando substâncias únicas, com potentes atividades biológicas. Os venenos de insetos himenópteros também foram amplamente estudados, resultando na identificação de centenas de peptídeos, que foram utilizados para criar uma biblioteca química que contribuiu para a identificação de modelos para o desenvolvimento de substâncias antifúngicas, antiparasitárias e anticancerígenas. O conhecimento construído dos venenos de himenópteros permitiu o desenvolvimento de um soro equino anti-peçonha de abelha. Dentre os microrganismos associados a insetos, a estratégia de bioprospecção foi compreender as bases moleculares das interações intra e interespécies (Ecologia Química), traduzindo esse conhecimento para possíveis aplicações biotecnológicas. Os resultados aqui discutidos reforçam a importância do programa BIOprospecTA no desenvolvimento de pesquisas com alto potencial inovador no Brasil.

6.
Mar Drugs, v. 20, n. 2, 111, jan. 2022
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4149

ABSTRACT

Schistosomiasis has been controlled for more than 40 years with a single drug, praziquantel, and only one molluscicide, niclosamide, raising concern of the possibility of the emergence of resistant strains. However, the molecular targets for both agents are thus far unknown. Consequently, the search for lead compounds from natural sources has been encouraged due to their diverse structure and function. Our search for natural compounds with potential use in schistosomiasis control led to the identification of an algal species, Laurencia dendroidea, whose extracts demonstrated significant activity toward both Schistosoma mansoni parasites and their intermediate host snails Biomphalaria glabrata. In the present study, three seaweed-derived halogenated sesquiterpenes, (−)-elatol, rogiolol, and obtusol are proposed as potential lead compounds for the development of anthelminthic drugs for the treatment of and pesticides for the environmental control of schistosomiasis. The three compounds were screened for their antischistosomal and molluscicidal activities. The screening revealed that rogiolol exhibits significant activity toward the survival of adult worms, and that all three compounds showed activity against S. mansoni cercariae and B. glabrata embryos. Biomonitored fractioning of L. dendroidea extracts indicated elatol as the most active compound toward cercariae larvae and snail embryos.

7.
Cells ; 10(12)2021 12 08.
Article in English | MEDLINE | ID: mdl-34943959

ABSTRACT

To reduce the potentially irreversible environmental impacts caused by fossil fuels, the use of renewable energy sources must be increased on a global scale. One promising source of biomass and bioenergy is sugarcane. The study of this crop's development in different planting seasons can aid in successfully cultivating it in global climate change scenarios. The sugarcane variety SP80-3280 was field grown under two planting seasons with different climatic conditions. A systems biology approach was taken to study the changes on physiological, morphological, agrotechnological, transcriptomics, and metabolomics levels in the leaf +1, and immature, intermediate and mature internodes. Most of the variation found within the transcriptomics and metabolomics profiles is attributed to the differences among the distinct tissues. However, the integration of both transcriptomics and metabolomics data highlighted three main metabolic categories as the principal sources of variation across tissues: amino acid metabolism, biosynthesis of secondary metabolites, and xenobiotics biodegradation and metabolism. Differences in ripening and metabolite levels mainly in leaves and mature internodes may reflect the impact of contrasting environmental conditions on sugarcane development. In general, the same metabolites are found in mature internodes from both "one-year" and "one-and-a-half-year sugarcane", however, some metabolites (i.e., phenylpropanoids with economic value) and natural antisense transcript expression are only detected in the leaves of "one-year" sugarcane.


Subject(s)
Plant Development/genetics , RNA, Antisense/genetics , Saccharum/genetics , Transcription, Genetic , Transcriptome/genetics , Edible Grain/genetics , Edible Grain/growth & development , Edible Grain/metabolism , Gene Expression Regulation, Plant/genetics , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Stems/genetics , Plant Stems/growth & development , Plant Stems/metabolism , Saccharum/growth & development , Saccharum/metabolism , Secondary Metabolism/genetics
8.
Food Chem ; 365: 130479, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34229991

ABSTRACT

Corn silk has been widely used as a nutritional and medicinal supplement due to its pharmacological properties, but there is a lack of studies that correlate the extracts' chemical composition with their biological activities. Herein, we performed the large-scale chemical characterization of corn silk extracts and used chemometrics to correlate the chemical composition with the biological activities of the extracts. Twenty-two metabolites were identified by High-Performance Liquid Chromatography coupled to Mass Spectrometry (HPLC-MS), whereas twelve were identified by Gas Chromatography coupled to Mass Spectrometry (GC-MS). Chemometrics allowed us to discriminate extracts obtained in different organic solvents from in natura and commercial product samples and to pinpoint potential candidate metabolites for the antioxidant and anti-glioma activities. Two flavone glycosides (7 and 8), along with a O-methylated anthocyanidin (26) seems to be the main contributors for the biological activities of the corn silk extracts.


Subject(s)
Plant Extracts , Zea mays , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Metabolomics , Silk
9.
Food Chem ; 364: 130453, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34186480

ABSTRACT

Lepidium meyenii is an edible plant that has been used as a nutritional supplement worldwide due to its medicinal properties. However, most of the studies have focused on the pharmacological activities of the extracts rather than their chemical composition. Herein, we used a combination of a multiplatform metabolite profiling approach and chemometrics to identify bioactive metabolites in L. meyenii. Extracts obtained with ethyl acetate and ethanol showed the promising antioxidant, anti-glioma and antibacterial activities. Sixty metabolites were identified by HPLC-MS, whereas fifteen were identified by GC-MS. Partial least squares discriminant analysis (PLS-DA), hierarchical cluster analysis (HCA), and Variable Importance in Projection (VIP) successfully discriminated extracts obtained in different organic solvents from in natura dry roots and commercial product samples of L. meyenii. Additionally, correlation analysis allowed us to pinpoint potential candidates responsible for each biological activity tested for the extracts, which could be extrapolate for other food-related species.


Subject(s)
Lepidium , Antioxidants , Chromatography, High Pressure Liquid , Peru , Plant Extracts
10.
Mar Drugs ; 19(5)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922065

ABSTRACT

Schistosomiasis is a parasitic disease that affects more than 250 million people. The treatment is limited to praziquantel and the control of the intermediate host with the highly toxic molluscicidal niclosamide. Marine algae are a poorly explored and promising alternative that can provide lead compounds, and the use of multivariate analysis could contribute to quicker discovery. As part of our search for new natural compounds with which to control schistosomiasis, we screened 45 crude extracts obtained from 37 Brazilian seaweed species for their molluscicidal activity against Biomphalaria glabrata embryos and schistosomicidal activities against Schistosoma mansoni. Two sets of extracts were taxonomically grouped for metabolomic analysis. The extracts were analyzed by GC-MS, and the data were subjected to Pattern Hunter and Pearson correlation tests. Overall, 22 species (60%) showed activity in at least one of the two models. Multivariate analysis pointed towards 3 hits against B. glabrata veliger embryos in the Laurencia/Laurenciella set, 5 hits against B. glabrata blastula embryos, and 31 against S. mansoni in the Ochrophyta set. Preliminary annotations suggested some compounds such as triquinane alcohols, prenylated guaianes, dichotomanes, and xenianes. Despite the putative identification, this work presents potential candidates and can guide future isolation and identification.


Subject(s)
Biomphalaria/drug effects , Bioprospecting , Drug Discovery , Molluscacides/pharmacology , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/prevention & control , Schistosomicides/pharmacology , Seaweed/metabolism , Animals , Biomphalaria/parasitology , Brazil , Metabolome , Metabolomics , Molluscacides/isolation & purification , Schistosoma mansoni/growth & development , Schistosomiasis mansoni/parasitology , Schistosomicides/isolation & purification
11.
Braz J Microbiol ; 52(3): 1275-1285, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33835420

ABSTRACT

Macroalgae comprise a vast group of aquatic organisms known for their richness in phytochemicals. In this sense, the lipophilic profile of five Antarctic seaweed species was characterized by chromatographic and spectroscopic analysis and their antioxidant and antimicrobial potential was evaluated. Results showed there were 31 lipophilic substances, mainly fatty acids (48.73 ± 0.77 to 331.91 ± 10.79 mg.Kg-1), sterols (14.74 ± 0.74 to 321.25 ± 30.13 mg.Kg-1), and alcohols (13.07 ± 0.04 to 91.87 ± 30.07 mg.Kg-1). Moreover, Desmarestia confervoides had strong antioxidant activity, inhibiting 86.03 ± 1.47% of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical at 1 mg.mL-1. Antimicrobial evaluation showed that extracts from Ulva intestinalis, Curdiea racovitzae, and Adenocystis utricularis inhibited the growth of Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), and Salmonella typhimurium (ATCC 14028) from concentrations of 1.5 to 6 mg.mL-1. Therefore, the evaluated brown, red, and green macroalgae contained several phytochemicals with promising biological activities that could be applied in the pharmaceutical, biotechnological, and food industries.


Subject(s)
Anti-Bacterial Agents , Antioxidants/pharmacology , Seaweed , Antarctic Regions , Anti-Bacterial Agents/pharmacology , Phaeophyceae/chemistry , Phytochemicals/pharmacology , Rhodophyta/chemistry , Seaweed/chemistry , Ulva/chemistry
12.
Mar Biotechnol (NY) ; 23(3): 357-372, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33811268

ABSTRACT

Marine-derived fungi proved to be a rich source of biologically active compounds. The genus Penicillium has been extensively studied regarding their secondary metabolites and biological applications. However, the photoprotective effects of these metabolites remain underexplored. Herein, the photoprotective potential of Penicillium echinulatum, an Antarctic alga-associated fungus, was assessed by UV absorption, photostability study, and protection from UVA-induced ROS generation assay on human immortalized keratinocytes (HaCaT) and reconstructed human skin (RHS). The photosafety was evaluated by the photoreactivity (OECD TG 495) and phototoxicity assays, performed by 3T3 neutral red uptake (3T3 NRU PT, OECD TG 432) and by the RHS model. Through a bio-guided purification approach, four known alkaloids, (-)-cyclopenin (1), dehydrocyclopeptine (2), viridicatin (3), and viridicatol (4), were isolated. Compounds 3 and 4 presented absorption in UVB and UVA-II regions and were considered photostable after UVA irradiation. Despite compounds 3 and 4 showed phototoxic potential in 3T3 NRU PT, no phototoxicity was observed in the RHS model (reduction of cell viability < 30%), which indicates their very low acute photoirritation and high photosafety potential in humans. Viridicatin was considered weakly photoreactive, while viridicatol showed no photoreactivity; both compounds inhibited UVA-induced ROS generation in HaCaT cells, although viridicatol was not able to protect the RHS model against UVA-induced ROS production. Thus, the results highlighted the photoprotective and antioxidant potential of metabolites produced by P. echinulatum which can be considered a new class of molecules for photoprotection, since their photosafety and non-cytotoxicity were predicted using recommended in vitro methods for topical use.


Subject(s)
Alkaloids/chemistry , Penicillium/chemistry , Skin/radiation effects , Ultraviolet Rays , 3T3 Cells , Alkaloids/toxicity , Animals , Antioxidants , Dermatitis, Phototoxic , HaCaT Cells , Humans , Mice , Neutral Red/metabolism , Reactive Oxygen Species/metabolism , Sunscreening Agents
13.
Chem Biodivers ; 18(5): e2100055, 2021 May.
Article in English | MEDLINE | ID: mdl-33780593

ABSTRACT

Despite its importance as a medicinal plant, there is a lack of studies that assessed the chemical composition of A. cochliacarpos extracts. Herein, we used a metabolite profiling approach and chemometrics as a powerful strategy to correlate the chemical composition with the antioxidant activity of A. cochliacarpos extracts. Extracts obtained with ethyl acetate showed greater antioxidant activity and higher total phenolic content than extracts obtained with hexane. The chemical composition was assessed by HPLC/HR-MS and it encompassed fatty alcohols, terpenoids, phenolic derivatives, lipids, carotenoid-like compounds, alkaloids, flavonoids, polyketides, and glycerophospholipids. Chemometrics successfully differentiated not only the chemical composition of extracts in response to the nature of the extraction solvent and the botanical part used during extraction but also it allowed us to associate the chemical composition with the antioxidant activity of the extracts, which might be particularly helpful for drug discovery and development programs.


Subject(s)
Antioxidants/chemistry , Fabaceae/chemistry , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Antioxidants/metabolism , Chromatography, High Pressure Liquid , Mass Spectrometry , Plant Extracts/metabolism , Plants, Medicinal/metabolism
14.
Nat Prod Res ; 35(23): 5470-5474, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32567355

ABSTRACT

Leishmaniasis is a group of diseases that have limited and high toxic therapeutic options. Herein, we evaluated the antileishmanial potential and cytotoxicity of hexanic extract obtained from the Antarctic brown alga Ascoseira mirabilis using bioguided fractionation against Leishmania amazonensis and murine macrophages, which was fractionated by SPE, yielding seven fractions (F1-F7). The fraction F6 showed good anti-amastigote activity (IC50 = 73.4 ± 0.4 µg mL-1) and low cytotoxicity (CC50 > 100 µg mL-1). Thus, in order to identify the bioactive constituent(s) of F6, the fraction was separated in a semipreparative HPLC, yielding four fractions (F6.1-F6.4). F6.2 was the most bioactive fraction (IC50 = 66.5 ± 4.5 µg mL-1) and GC-MS analyses revealed that the compounds octadecane, propanoic acid, 1-monomyristin and azelaic acid correspond to 61% of its composition. These data show for the first time the antileishmanial potential of the Antarctic alga A. mirabilis.


Subject(s)
Antiprotozoal Agents , Leishmania mexicana , Leishmaniasis , Mirabilis , Phaeophyceae , Animals , Antiprotozoal Agents/pharmacology , Leishmaniasis/drug therapy , Mice , Mice, Inbred BALB C , Plant Extracts/therapeutic use
15.
Marine Drugs, v. 19, n. 5, 234, abr. 2021
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3693

ABSTRACT

Schistosomiasis is a parasitic disease that affects more than 250 million people. The treatment is limited to praziquantel and the control of the intermediate host with the highly toxic molluscicidal niclosamide. Marine algae are a poorly explored and promising alternative that can provide lead compounds, and the use of multivariate analysis could contribute to quicker discovery. As part of our search for new natural compounds with which to control schistosomiasis, we screened 45 crude extracts obtained from 37 Brazilian seaweed species for their molluscicidal activity against Biomphalaria glabrata embryos and schistosomicidal activities against Schistosoma mansoni. Two sets of extracts were taxonomically grouped for metabolomic analysis. The extracts were analyzed by GC–MS, and the data were subjected to Pattern Hunter and Pearson correlation tests. Overall, 22 species (60%) showed activity in at least one of the two models. Multivariate analysis pointed towards 3 hits against B. glabrata veliger embryos in the Laurencia/Laurenciella set, 5 hits against B. glabrata blastula embryos, and 31 against S. mansoni in the Ochrophyta set. Preliminary annotations suggested some compounds such as triquinane alcohols, prenylated guaianes, dichotomanes, and xenianes. Despite the putative identification, this work presents potential candidates and can guide future isolation and identification

16.
Photochem Photobiol ; 96(6): 1215-1220, 2020 11.
Article in English | MEDLINE | ID: mdl-32614978

ABSTRACT

Sunlight ultraviolet (UV) radiation constitutes an important environmental genotoxic agent that organisms are exposed to, as it can damage DNA directly, generating pyrimidine dimers, and indirectly, generating oxidized bases and single-strand breaks (SSBs). These lesions can lead to mutations, triggering skin and eye disorders, including carcinogenesis and photoaging. Stratospheric ozone layer depletion, particularly in the Antarctic continent, predicts an uncertain scenario of UV incidence on the Earth in the next decades. This research evaluates the DNA damage caused by environmental exposure to late spring sunlight in the Antarctic Peninsula, where the ozone layer hole is more pronounced. These experiments were performed at the Brazilian Comandante Ferraz Antarctic Station, at King's George Island, South Shetlands Islands. For comparison, tropical regions were also analyzed. Samples of plasmid DNA were exposed to sunlight. Cyclobutane pyrimidine dimers (CPDs), oxidized base damage and SSBs were detected using specific enzymes. In addition, an immunological approach was used to detect CPDs. The results reveal high levels of DNA damage induced by exposure under the Antarctic sunlight, inversely correlated with ozone layer thickness, confirming the high impact of ozone layer depletion on the DNA damaging action of sunlight in Antarctica.


Subject(s)
DNA Damage , Seasons , Sunlight , Antarctic Regions , DNA Repair , Ozone Depletion
17.
Exp Hematol ; 86: 67-77.e2, 2020 06.
Article in English | MEDLINE | ID: mdl-32422231

ABSTRACT

There exists an urgent need for the development of new drugs for the treatment of lymphoid neoplasms. The aim of this study was to evaluate the cytotoxic effect of the marine plastoquinone 9'-hydroxysargaquinone (9'-HSQ), focusing on investigation of the mechanism by which it causes death in lymphoid neoplastic cells. This particular plastoquinone reduced the cell viability of different hematological tumor cell lines in a time-dependent and concentration-dependent manner. Intrinsic apoptosis occurred with time-dependent reduction of mitochondrial membrane potential (42.3 ± 1.1% of Daudi cells and 18.6 ± 5.6% of Jurkat cells maintained mitochondrial membrane integrity) and apoptosis-inducing factor release (Daudi: 133.3 ± 8.1%, Jurkat: 125.7 ± 6.9%). Extrinsic apoptosis also occurred, as reflected by increased FasR expression (Daudi: 139.5 ± 7.1%, Jurkat: 126.0 ± 1.0%). Decreases were observed in the expression of Ki-67 proliferation marker (Daudi: 67.5 ± 2.5%, Jurkat: 84.3 ± 3.8%), survivin (Daudi: 66.0 ± 9.9%, Jurkat: 63.1 ± 6.0%), and NF-κB (0.7 ± 0.04% in Jurkat cells). Finally, 9'-HSQ was cytotoxic to neoplastic cells from patients with different lymphoid neoplasms (IC50: 4.9 ± 0.6 to 34.2 ± 0.4 µmol/L). These results provide new information on the apoptotic mechanisms of 9'-HSQ and suggest that it might be a promising alternative for the treatment of lymphoid neoplasms.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Aquatic Organisms/chemistry , Hematologic Neoplasms/drug therapy , Lymphoproliferative Disorders/drug therapy , Phaeophyceae/chemistry , Plastoquinone/pharmacology , Antineoplastic Agents/chemistry , Drug Screening Assays, Antitumor , Hematologic Neoplasms/metabolism , Hematologic Neoplasms/pathology , Humans , Jurkat Cells , K562 Cells , Lymphoproliferative Disorders/metabolism , Lymphoproliferative Disorders/pathology , Plastoquinone/chemistry
18.
Antioxidants (Basel) ; 9(4)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316531

ABSTRACT

Fucoxanthin possesses a well-described antioxidant activity that might be useful for human skin photoprotection. However, there is a lack of scientific information regarding its properties when applied onto human skin. Thus, the objective of the present study was to assess the photoprotective and phototoxicity potential of fucoxanthin based on its ultraviolet (UVB 280-320 nm; UVA 320-400 nm) and visible (VIS 400-700 nm) absorption, photostability, phototoxicity in 3T3 mouse fibroblast culture vs. full-thickness reconstructed human skin (RHS), and its ability to inhibit reactive oxygen species formation that is induced by UVA on HaCaT keratinocytes. Later, we evaluated the antioxidant properties of the sunscreen formulation plus 0.5% fucoxanthin onto RHS to confirm its bioavailability and antioxidant potential through the skin layers. The compound was isolated from the alga Desmarestia anceps. Fucoxanthin, despite presenting chemical photo-instability (dose 6 J/cm2: 35% UVA and 21% VIS absorbance reduction), showed acceptable photodegradation (dose 27.5 J/cm2: 5.8% UVB and 12.5% UVA absorbance reduction) when it was added to a sunscreen at 0.5% (w/v). In addition, it increased by 72% of the total sunscreen UV absorption spectra, presenting UV-booster properties. Fucoxanthin presented phototoxic potential in 3T3 fibroblasts (mean photo effect 0.917), but it was non-phototoxic in the RHS model due to barrier function that was provided by the stratum corneum. In addition, it showed a significant inhibition of ROS formation at 0.01% (p < 0.001), in HaCat, and in a sunscreen at 0.5% (w/v) (p < 0.001), in RHS. In conclusion, in vitro results showed fucoxanthin protective potential to the skin that might contribute to improving the photoprotective potential of sunscreens in vivo.

20.
Pharmaceutics ; 12(2)2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32033492

ABSTRACT

UV light catalyzes the ozone formation from air pollutants, like nitrogen oxides. Since ozone reacts with cutaneous sebum lipids to peroxides and, thus, promotes inflammation, tumorigenesis, and aging, even broad-spectrum sunscreens cannot properly protect skin. Meanwhile, xanthophylls, like fucoxanthin, proved their antioxidant and cytoprotective functions, but the safety of their topical application in human cell-based models remains unknown. Aiming for a more detailed insight into the cutaneous fucoxanthin toxicity, we assessed the tissue viability according to OECD test guideline no. 439 as well as changes in inflammation (IL-1α, IL-6, IL-8), homeostasis (EGFR, HSPB1) and metabolism (NAT1). First, we proved the suitability of our 24-well-based reconstructed human skin for irritation testing. Next, we dissolved 0.5% fucoxanthin either in alkyl benzoate or in ethanol and applied both solutions onto the tissue surface. None of the solutions decreased RHS viability below 50%. In contrast, fucoxanthin ameliorated the detrimental effects of ethanol and reduced the gene expression of pro-inflammatory interleukins 6 and 8, while increasing NAT1 gene expression. In conclusion, we developed an organ-on-a-chip compatible RHS, being suitable for skin irritation testing beyond tissue viability assessment. Fucoxanthin proved to be non-irritant in RHS and already showed first skin protective effects following topical application.

SELECTION OF CITATIONS
SEARCH DETAIL