Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Genet C Semin Med Genet ; 163C(4): 259-70, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24127277

ABSTRACT

Craniosynostosis is one of the most common craniofacial disorders encountered in clinical genetics practice, with an overall incidence of 1 in 2,500. Between 30% and 70% of syndromic craniosynostoses are caused by mutations in hotspots in the fibroblast growth factor receptor (FGFR) genes or in the TWIST1 gene with the difference in detection rates likely to be related to different study populations within craniofacial centers. Here we present results from molecular testing of an Australia and New Zealand cohort of 630 individuals with a diagnosis of craniosynostosis. Data were obtained by Sanger sequencing of FGFR1, FGFR2, and FGFR3 hotspot exons and the TWIST1 gene, as well as copy number detection of TWIST1. Of the 630 probands, there were 231 who had one of 80 distinct mutations (36%). Among the 80 mutations, 17 novel sequence variants were detected in three of the four genes screened. In addition to the proband cohort there were 96 individuals who underwent predictive or prenatal testing as part of family studies. Dysmorphic features consistent with the known FGFR1-3/TWIST1-associated syndromes were predictive for mutation detection. We also show a statistically significant association between splice site mutations in FGFR2 and a clinical diagnosis of Pfeiffer syndrome, more severe clinical phenotypes associated with FGFR2 exon 10 versus exon 8 mutations, and more frequent surgical procedures in the presence of a pathogenic mutation. Targeting gene hot spot areas for mutation analysis is a useful strategy to maximize the success of molecular diagnosis for individuals with craniosynostosis.


Subject(s)
Acrocephalosyndactylia/genetics , Craniofacial Dysostosis/genetics , Craniosynostoses/genetics , Acrocephalosyndactylia/diagnosis , Acrocephalosyndactylia/pathology , Australia , Craniofacial Dysostosis/diagnosis , Craniofacial Dysostosis/pathology , Craniosynostoses/classification , Craniosynostoses/diagnosis , Craniosynostoses/pathology , Humans , Mutation , New Zealand , Nuclear Proteins/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Twist-Related Protein 1/genetics
2.
Clin Genet ; 73(4): 353-9, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18279435

ABSTRACT

We report on a 4-year-old male with an interstitial tandem duplication of Xq21.1-q21.31 who presented with clinical features of Prader-Willi syndrome (PWS). The duplication was maternally inherited. Abnormalities of the X chromosome have previously been reported in association with a PWS phenotype, but to date, specific duplications of Xq21.1-q21.31 have not. We refined the chromosomal breakpoints seen on initial G-banded karyotyping in our case with comparative genomic hybridization by microarray (array CGH). The duplication was between 11.1 and 14.4 Mb in length and overlaps with three loci to which mental retardation with PWS-like features have been previously mapped, showing the utility of array CGH in helping to identify candidate genes. We conclude that duplication of chromosomal region Xq21.1-q21.31 potentially results in a PWS-like phenotype. Reviewing the literature on similar duplications, we further conclude that distal Xq duplications can result in features typically seen in infants with PWS, while proximal duplications can result in features typically seen in older children and adults with PWS. Duplications of chromosome Xq should be considered in the differential diagnosis of PWS, especially in males.


Subject(s)
Chromosomes, Human, X/genetics , Gene Duplication , Prader-Willi Syndrome/genetics , Child, Preschool , Chromosome Banding , Humans , In Situ Hybridization, Fluorescence , Infant , Male , Nucleic Acid Hybridization
3.
Am J Med Genet ; 42(1): 127-34, 1992 Jan 01.
Article in English | MEDLINE | ID: mdl-1308352

ABSTRACT

Norrie disease is a rare X-linked recessive disorder characterized by blindness from infancy. The gene for Norrie disease has been localized to Xp11.3. More recently, the genes for monoamine oxidase (MAOA, MAOB) have been mapped to the same region. This study evaluates the clinical, biochemical, and neuropsychiatric data in an affected male and 2 obligate heterozygote females from a single family with a submicroscopic deletion involving Norrie disease and MAO genes. The propositus was a profoundly retarded, blind male; he also had neurologic abnormalities including myoclonus and stereotopy-habit disorder. Both obligate carrier females had a normal IQ. The propositus' mother met diagnostic criteria for "chronic hypomania and schizotypal features." The propositus' MAO activity was undetectable and the female heterozygotes had reduced levels comparable to patients receiving MAO inhibiting antidepressants. MAO substrate and metabolite abnormalities were found in the propositus' plasma and CSF. This study indicates that subtle biochemical and possibly neuropsychiatric abnormalities may be detected in some heterozygotes with the microdeletion in Xp11.3 due to loss of the gene product for the MAO genes; this deletion can also explain some of the complex phenotype of this contiguous gene syndrome in the propositus.


Subject(s)
Blindness/genetics , Chromosome Deletion , Monoamine Oxidase/genetics , X Chromosome , Adolescent , Blindness/metabolism , Blindness/psychology , Female , Heterozygote , Humans , Intellectual Disability/genetics , Male , Monoamine Oxidase/deficiency , Myoclonus/genetics , Phenotype , Stereotyped Behavior , Syndrome
4.
Am J Hum Genet ; 48(1): 65-71, 1991 Jan.
Article in English | MEDLINE | ID: mdl-1824668

ABSTRACT

The origin of nondisjunction in trisomy 21 has so far been studied using cytogenetic heteromorphisms and DNA polymorphisms using Southern blot analysis. Short sequence repeats have recently been described as an abundant class of DNA polymorphisms in the human genome, which can be typed using the polymerase chain reaction (PCR) amplification. We describe the usage of such markers on chromosome 21 in the study of parental origin of the additional chromosome 21 in 87 cases of Down syndrome. The polymorphisms studied were (a) two (GT)n repeats and a poly(A) tract of an Alu sequence within the HMG14 gene and (b) a (GT)n repeat of locus D21S156. The parental origin was determined in 68 cases by studying the segregation of polymorphic alleles in the nuclear families (either by scoring three different alleles in the proband or by dosage comparison of two different alleles in the proband). Our results demonstrate the usefulness of highly informative PCR markers for the study of nondisjunction in Down syndrome.


Subject(s)
Chromosomes, Human, Pair 21 , DNA/genetics , Down Syndrome/genetics , Polymorphism, Genetic , Repetitive Sequences, Nucleic Acid , Alleles , Female , Heterozygote , Humans , Male , Molecular Sequence Data , Polymerase Chain Reaction
5.
Clin Genet ; 37(1): 18-23, 1990 Jan.
Article in English | MEDLINE | ID: mdl-2302822

ABSTRACT

A mother and two daughters are presented with severe short stature with disproportionately short limbs, small hands, clinodactyly, valvular heart disease and a distinctive facies with ptosis, high-arched palate and crowded dentition. This appears to be a previously undescribed syndrome, probably inherited as an autosomal dominant trait.


Subject(s)
Body Height/genetics , Face/abnormalities , Hand Deformities/genetics , Heart Valve Diseases/genetics , Adolescent , Adult , Child , Female , Hand Deformities/complications , Heart Valve Diseases/complications , Humans , Karyotyping , Male , Mitral Valve Prolapse/complications , Mitral Valve Prolapse/genetics , Pedigree , Pulmonary Valve Stenosis/complications , Pulmonary Valve Stenosis/genetics , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...