Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Mol Immunol ; 171: 77-92, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795687

ABSTRACT

Systemic lupus erythematosus (SLE) involves a florid set of clinical manifestations whose autoreactive origin is characterized by an overactivation of the immune system and the production of a large number of autoantibodies. Because it is a complex pathology with an inflammatory component, its pathogenesis is not yet fully understood, assuming both genetic and environmental predisposing factors. Currently, it is known that the role of the human microbiome is crucial in maintaining the transkingdom balance between commensal microorganisms and the immune system. In the present work we study the intestinal microbiota of Argentine patients with different stages of SLE receiving or not different treatments. Microbiota composition and fecal miRNAs were assessed by 16 S sequencing and qPCR. hsa-miR-223-3p, a miRNA involved in several inflammation regulation pathways, was found underexpressed in SLE patients without immunosuppressive treatment. In terms of microbiota there were clear differences in population structure (Weighted and Unweighted Unifrac distances, p-value <0.05) and core microbiome between cases and controls. In addition, Collinsella, Bifidobacterium, Streptococcus genera and aromatics degradation metabolisms were overrepresented in the SLE group. Medical treatment was also determinant as several microbial metabolic pathways were influenced by immunosuppressive therapy. Particularly, allantoin degradation metabolism was differentially expressed in the group of patients receiving immunosuppressants. Finally, we performed a logistic regression model (LASSO: least absolute shrinkage and selection operator) considering the expression levels of the fecal hsa-miR223-3p; the core microbiota; the differentially abundant bacterial taxa and the differentially abundant metabolic pathways (p<0.05). The model predicted that SLE patients could be associated with greater relative abundance of the formaldehyde oxidation pathway (RUMP_PWY). On the contrary, the preponderance of the ketodeoxyoctonate (Kdo) biosynthesis and activation route (PWY_1269) and the genera Lachnospiraceae_UCG_004, Lachnospira, Victivallis and UCG_003 (genus belonging to the family Oscillospiraceae of the class Clostridia) were associated with a control phenotype. Overall, the present work could contribute to the development of integral diagnostic tools for the comprehensive phenotyping of patients with SLE. In this sense, studying the commensal microbial profile and possible pathobionts associated with SLE in our population proposes more effective and precise strategies to explore possible treatments based on the microbiota of SLE patients.


Subject(s)
Biomarkers , Feces , Gastrointestinal Microbiome , Lupus Erythematosus, Systemic , MicroRNAs , Humans , MicroRNAs/genetics , Lupus Erythematosus, Systemic/microbiology , Lupus Erythematosus, Systemic/immunology , Feces/microbiology , Female , Adult , Biomarkers/metabolism , Male , Middle Aged , Immunosuppressive Agents/therapeutic use
2.
FEBS Lett ; 596(21): 2795-2807, 2022 11.
Article in English | MEDLINE | ID: mdl-36266942

ABSTRACT

The ErbB2 receptor tyrosine kinase plays a key role in mammary gland development. It forms large clusters which serve as signaling platforms for integration of extracellular information. The discoidin domain receptor (DDR) family are collagen receptor tyrosine kinases which, together with ErbB2, are involved in many physiological and pathological processes. Here, we investigated the interaction of ErbB2 and DDR1 receptors in breast cancer cells. In contrast to beta1-integrin, DDR1 colocalizes with ErbB2 in membrane clusters regardless of their expression levels. We demonstrated that this spatial coexistence is a consequence of the physical interaction between these receptors. In addition, these receptors are coexpressed in the normal mammary gland but not in breast tumor samples. Together, these results present DDR1 as a novel modulator of the ErbB2/ErbB3 signaling pathway.


Subject(s)
Discoidin Domain Receptor 1 , Receptor Protein-Tyrosine Kinases , Discoidin Domain Receptor 1/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Discoidin Domain Receptors/metabolism , Epithelial Cells/metabolism
3.
Front Microbiol ; 10: 965, 2019.
Article in English | MEDLINE | ID: mdl-31164869

ABSTRACT

In recent years, the field of immunology has been revolutionized by the growing understanding of the fundamental role of microbiota in the immune system function. The immune system has evolved to maintain a symbiotic relationship with these microbes. The aim of our study was to know in depth the uncharacterized metagenome of the Buenos Aires (BA) city population and its metropolitan area, being the second most populated agglomeration in the southern hemisphere. For this purpose, we evaluated 30 individuals (age: 35.23 ± 8.26 years and BMI: 23.91 ± 3.4 kg/m2), from the general population of BA. The hypervariable regions V3-V4 of the bacterial 16S gene was sequenced by MiSeq-Illumina system, obtaining 47526 ± 4718 sequences/sample. The dominant phyla were Bacteroidetes, Firmicutes, Proteobacteria, Verrucomicrobia, and Actinobacteria. Additionally, we compared the microbiota of BA with other westernized populations (Santiago de Chile, Rosario-Argentina, United States-Human-microbiome-project, Bologna-Italy) and the Hadza population of hunter-gatherers. The unweighted UniFrac clustered together all westernized populations, leaving the hunter-gatherer population from Hadza out. In particular, Santiago de Chile's population turns out to be the closest to BA's, principally due to the presence of Verrucomicrobiales of the genus Akkermansia. These microorganisms have been proposed as a hallmark of a healthy gut. Finally, westernized populations showed more abundant metabolism related KEEG pathways than hunter-gatherers, including carbohydrate metabolism (amino sugar and nucleotide sugar metabolism), amino acid metabolism (alanine, aspartate and glutamate metabolism), lipid metabolism, biosynthesis of secondary metabolites, and sulfur metabolism. These findings contribute to promote research and comparison of the microbiome in different human populations, in order to develop more efficient therapeutic strategies for the restoration of a healthy dialogue between host and environment.

4.
J Cell Biol ; 217(8): 2777-2798, 2018 08 06.
Article in English | MEDLINE | ID: mdl-29980625

ABSTRACT

Estrogen receptor α (ERα) is expressed in tissues as diverse as brains and mammary glands. In breast cancer, ERα is a key regulator of tumor progression. Therefore, understanding what activates ERα is critical for cancer treatment in particular and cell biology in general. Using biochemical approaches and superresolution microscopy, we show that estrogen drives membrane ERα into endosomes in breast cancer cells and that its fate is determined by the presence of fibronectin (FN) in the extracellular matrix; it is trafficked to lysosomes in the absence of FN and avoids the lysosomal compartment in its presence. In this context, FN prolongs ERα half-life and strengthens its transcriptional activity. We show that ERα is associated with ß1-integrin at the membrane, and this integrin follows the same endocytosis and subcellular trafficking pathway triggered by estrogen. Moreover, ERα+ vesicles are present within human breast tissues, and colocalization with ß1-integrin is detected primarily in tumors. Our work unravels a key, clinically relevant mechanism of microenvironmental regulation of ERα signaling.


Subject(s)
Estrogen Receptor alpha/metabolism , Fibronectins/physiology , Lysosomes/metabolism , Cell Line, Tumor , Endosomes/metabolism , Extracellular Matrix/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Humans , Integrin beta1/metabolism , MCF-7 Cells , Models, Biological , Protein Transport , Proteolysis , Tumor Microenvironment
5.
Arch Biochem Biophys ; 651: 1-12, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29702063

ABSTRACT

α-synuclein is involved in both familial and sporadic Parkinson's disease. Although its interaction with mitochondria has been well documented, several aspects remains unknown or under debate such as the specific sub-mitochondrial localization or the dynamics of the interaction. It has been suggested that α-synuclein could only interact with ER-associated mitochondria. The vast use of model systems and experimental conditions makes difficult to compare results and extract definitive conclusions. Here we tackle this by analyzing, in a simplified system, the interaction between purified α-synuclein and isolated rat brain mitochondria. This work shows that wild type α-synuclein interacts with isolated mitochondria and translocates into the mitochondrial matrix. This interaction and the irreversibility of α-synuclein translocation depend on incubation time and α-synuclein concentration. FRET experiments show that α-synuclein localizes close to components of the TOM complex suggesting a passive transport of α-synuclein through the outer membrane. In addition, α-synuclein binding alters mitochondrial function at the level of Complex I leading to a decrease in ATP synthesis and an increase of ROS production.


Subject(s)
Electron Transport Complex I/metabolism , Mitochondria/metabolism , alpha-Synuclein/metabolism , Adenosine Triphosphate/metabolism , Animals , Humans , Male , Membrane Potential, Mitochondrial , Parkinson Disease/metabolism , Protein Transport , Rats, Wistar , Reactive Oxygen Species/metabolism
6.
Chemistry ; 24(24): 6344-6348, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29512206

ABSTRACT

A novel fluorescent molecular probe is reported, which is able to detect glycoproteins, especially mucins, with high sensitivity and with a turn-on response along with a large Stokes shift (>130 nm), within the biologically active window. The probe contains an aminotricarbocyanine as the fluorescent reporter with a linked benzoboroxole as the recognition unit, which operates through a dynamic covalent reaction between the boronic hemiester residue of the receptor and cis-diols of the analyte. The superior selectivity of the probe is displayed by the labeling of mucins present in Calu-3 cells. The new benzoboroxole fluorescent derivative gathers together key properties to make it a highly rated molecular probe: specificity, excellent solubility in water, and off-on near infrared emission. This probe is expected to be an excellent tool for imaging intracellular mucin to evaluate mucus-related diseases as well as a sensing strategy towards glycosylated structures with a high potential for theranostics approaches in biological samples.


Subject(s)
Fluorescent Dyes/chemistry , Glycoproteins/analysis , Mucins/analysis , Spectroscopy, Near-Infrared/methods , Boron Compounds/chemistry , Epithelial Cells/drug effects , Humans , Molecular Structure
7.
Mol Cell Neurosci ; 88: 107-117, 2018 04.
Article in English | MEDLINE | ID: mdl-29414102

ABSTRACT

Parkinson's disease is a neurodegenerative movement disorder caused by the loss of dopaminergic neurons from substantia nigra. It is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. Additional common features of this disease are the mitochondrial dysfunction and the activation/inhibition of autophagy both events associated to the intracellular accumulation of α-synuclein. The mechanism by which these events contribute to neural degeneration remains unknown. In the present work we investigated the effect of α-synuclein on mitochondrial dynamics and autophagy/mitophagy in SH-SY5Y cells, an in vitro model of Parkinson disease. We demonstrated that overexpression of wild type α-synuclein causes moderated toxicity, ROS generation and mitochondrial dysfunction. In addition, α-synuclein induces the mitochondrial fragmentation on a Drp-1-dependent fashion. Overexpression of the fusion protein Opa-1 prevented both mitochondrial fragmentation and cytotoxicity. On the other hand, cells expressing α-synuclein showed activated autophagy and particularly mitophagy. Employing a genetic strategy we demonstrated that autophagy is triggered in order to protect cells from α-synuclein-induced cell death. Our results clarify the role of Opa-1 and Drp-1 in mitochondrial dynamics and cell survival, a controversial α-synuclein research issue. The findings presented point to the relevance of mitochondrial homeostasis and autophagy in the pathogenesis of PD. Better understanding of the molecular interaction between these processes could give rise to novel therapeutic methods for PD prevention and amelioration.


Subject(s)
Autophagy/physiology , GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , alpha-Synuclein/metabolism , Cell Line, Tumor , Dopaminergic Neurons/metabolism , Dynamins , Humans , Mitochondrial Dynamics/physiology , Mitophagy/physiology , Parkinson Disease/genetics , Substantia Nigra/metabolism
8.
Front Microbiol ; 8: 1783, 2017.
Article in English | MEDLINE | ID: mdl-28979244

ABSTRACT

Archaea, bacteria, and eukarya secrete membrane microvesicles (MVs) as a mechanism for intercellular communication. We report the isolation and characterization of MVs from the probiotic strain Lactobacillus casei BL23. MVs were characterized using analytical high performance techniques, DLS, AFM and TEM. Similar to what has been described for other Gram-positive bacteria, MVs were on the nanometric size range (30-50 nm). MVs carried cytoplasmic components such as DNA, RNA and proteins. Using a proteomic approach (LC-MS), we identified a total of 103 proteins; 13 exclusively present in the MVs. The MVs content included cell envelope associated and secretory proteins, heat and cold shock proteins, several metabolic enzymes, proteases, structural components of the ribosome, membrane transporters, cell wall-associated hydrolases and phage related proteins. In particular, we identified proteins described as mediators of Lactobacillus' probiotic effects such as p40, p75 and the product of LCABL_31160, annotated as an adhesion protein. The presence of these proteins suggests a role for the MVs in the bacteria-gastrointestinal cells interface. The expression and further encapsulation of proteins into MVs of GRAS (Generally Recognized as Safe) bacteria could represent a scientific novelty, with applications in food, nutraceuticals and clinical therapies.

9.
PLoS One ; 12(3): e0174230, 2017.
Article in English | MEDLINE | ID: mdl-28306722

ABSTRACT

ErbB2 is a member of the ErbB family of tyrosine kinase receptors that plays a major role in breast cancer progression. Located at the plasma membrane, ErbB2 forms large clusters in spite of the presence of growth factors. Beta1 integrin, membrane receptor of extracellular matrix proteins, regulates adhesion, migration and invasiveness of breast cancer cells. Physical interaction between beta1 integrin and ErbB2 has been suggested although published data are contradictory. The aim of the present work was to study the interaction between ErbB2 and beta1 integrin in different scenarios of expression and activation. We determined that beta1 integrin and ErbB2 colocalization is dependent on the expression level of both receptors exclusively in adherent cells. In suspension cells, lack of focal adhesions leave integrins free to diffuse on the plasma membrane and interact with ErbB2 even at low expression levels of both receptors. In adherent cells, high expression of beta1 integrin leaves unbound receptors outside focal complexes that diffuse within the plasma membrane and interact with ErbB2 membrane domains. Superresolution imaging showed the existence of two distinct populations of ErbB2: a major population located in large clusters and a minor population outside these structures. Upon ErbB2 overexpression, receptors outside large clusters can freely diffuse at the membrane and interact with integrins. These results reveal how expression levels of beta1 integrin and ErbB2 determine their frequency of colocalization and show that extracellular matrix proteins shape membrane clusters distribution, regulating ErbB2 and beta1 integrin activity in breast cancer cells.


Subject(s)
Breast Neoplasms/pathology , CD18 Antigens/metabolism , Receptor, ErbB-2/metabolism , Cell Line, Tumor , Humans
10.
J Mater Chem B ; 5(22): 4031-4034, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-32264135

ABSTRACT

We report the synthesis of a near-infrared (NIR) fluorescent pH probe with a remarkable Stokes shift (∼135 nm) based on a tricarbocyanine (Cy-PIP). The fluorescent molecule was anchored to SiO2 nanoparticles (Cy-PIP@SiO2) and is capable of monitoring pH changes within the physiological range (pH 6-8). The Cy-PIP@SiO2 nanoparticles were successfully internalized by HeLa cells as shown by fluorescence confocal microscopy, while flow cytometry revealed pH fluctuations during the endocytic pathway.

11.
Chem Commun (Camb) ; 51(23): 4895-8, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25703604

ABSTRACT

This work describes a novel mono-boronic acid derivative of a tricarbocyanine. The probe is a genuine near-infrared fluorescence emitter with improved properties such as a large Stokes shift, excellent water solubility and sensitive fluorogenicity upon binding to carbohydrates under physiological conditions.


Subject(s)
Boron Compounds/chemistry , Carbohydrates/chemistry , Monosaccharides/chemistry , Animals , Cell Line , Fluorescence , Fluorescent Dyes/chemistry , Molecular Structure , Sensitivity and Specificity
12.
Cell Commun Signal ; 11(1): 18, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23497114

ABSTRACT

BACKGROUND: Insulin and insulin-like growth factors (IGFs) act on tetrameric tyrosine kinase receptors controlling essential functions including growth, metabolism, reproduction and longevity. The insulin receptor (IR) binds insulin and IGFs with different affinities triggering different cell responses. RESULTS: We showed that IGF-II induces cell proliferation and gene transcription when IR-B is over-expressed. We combined biotinylated ligands with streptavidin conjugated quantum dots and visible fluorescent proteins to visualize the binding of IGF-II and insulin to IR-B and their ensuing internalization. By confocal microscopy and flow cytometry in living cells, we studied the internalization kinetic through the IR-B of both IGF-II, known to elicit proliferative responses, and insulin, a regulator of metabolism. CONCLUSIONS: IGF-II promotes a faster internalization of IR-B than insulin. We propose that IGF-II differentially activates mitogenic responses through endosomes, while insulin-activated IR-B remains at the plasma membrane. This fact could facilitate the interaction with key effector molecules involved in metabolism regulation.

13.
Neoplasia ; 14(11): 1043-56, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23226098

ABSTRACT

Activation of the androgen receptor (AR) is a key step in the development of prostate cancer (PCa). Several mechanisms have been identified in AR activation, among them signal transducer and activator of transcription 3 (STAT3) signaling. Disruption of STAT3 activity has been associated to cancer progression. Recent studies suggest that heme oxygenase 1 (HO-1) may play a key role in PCa that may be independent of its catalytic function. We sought to explore whether HO-1 operates on AR transcriptional activity through the STAT3 axis. Our results display that HO-1 induction in PCa cells represses AR activation by decreasing the prostate-specific antigen (PSA) promoter activity and mRNA levels. Strikingly, this is the first report to show by chromatin immunoprecipitation analysis that HO-1 associates to gene promoters, revealing a novel function for HO-1 in the nucleus. Furthermore, HO-1 and STAT3 directly interact as determined by co-immunoprecipitation studies. Forced expression of HO-1 increases STAT3 cytoplasmic retention. When PCa cells were transfected with a constitutively active STAT3 mutant, PSA and STAT3 downstream target genes were abrogated under hemin treatment. Additionally, a significant decrease in pSTAT3 protein levels was detected in the nuclear fraction of these cells. Confocal microscopy images exhibit a decreased rate of AR/STAT3 nuclear co-localization under hemin treatment. In vivo studies confirmed that STAT3 nuclear delimitation was significantly decreased in PC3 tumors overexpressing HO-1 grown as xenografts in nude mice. These results provide a novel function for HO-1 down-modulating AR transcriptional activity in PCa, interfering with STAT3 signaling, evidencing its role beyond heme degradation.


Subject(s)
Heme Oxygenase-1/metabolism , Heme/metabolism , Prostatic Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , Animals , Cell Line, Tumor , Cytoplasm/metabolism , Disease Models, Animal , Gene Expression , Heme Oxygenase-1/genetics , Humans , Male , Matrix Metalloproteinase 9/metabolism , Mice , Promoter Regions, Genetic , Prostate-Specific Antigen/genetics , Prostatic Neoplasms/genetics , Protein Binding , Protein Transport , Receptors, Androgen/metabolism , Signal Transduction , Transplantation, Heterologous
14.
J Cell Sci ; 119(Pt 1): 141-52, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16352660

ABSTRACT

The small GTPase Rac contributes to regulation of cytoskeletal rearrangement during chemokine-induced lymphocyte adhesion and migration in a multi-step process that is very precisely coordinated. Chimaerins are Rac1-specific GTPase-activating proteins of unknown biological function, which have a canonical diacylglycerol C1-binding domain. Here we demonstrate endogenous expression of beta2-chimaerin in T lymphocytes and study the functional role of this protein in phorbol ester and chemokine (CXCL12)-regulated T-cell responses. We used green fluorescent protein-tagged beta2-chimaerin and phorbol ester stimulation to investigate changes in protein localization in living lymphocytes. Our results demonstrate that active Rac cooperates with C1-dependent phorbol ester binding to induce sustained GFP-beta2-chimaerin localization to the membrane. Subcellular distribution of GFP beta2-chimaerin in living cells showed no major changes following CXCL12 stimulation. Nonetheless Rac1-GTP levels were severely inhibited in GFP-beta2-chimaerin-expressing cells, which displayed reduced CXCL12-induced integrin-dependent adhesion and spreading. This effect was dependent on chimaerin GTPase-activating protein function and required diacylglycerol generation. Whereas beta2-chimaerin overexpression decreased static adhesion, it enhanced CXCL12-dependent migration via receptor-dependent diacylglycerol production. These studies demonstrate that beta2-chimaerin provides a novel, diacylglycerol-dependent mechanism for Rac regulation in T cells and suggest a functional role for this protein in Rac-mediated cytoskeletal remodeling.


Subject(s)
Cell Adhesion/physiology , Chemotaxis/physiology , Diglycerides/metabolism , Neoplasm Proteins/metabolism , T-Lymphocytes/physiology , Animals , Chemokine CXCL12 , Chemokines, CXC/metabolism , Enzyme Activation , Humans , Jurkat Cells , Neoplasm Proteins/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , Tetradecanoylphorbol Acetate/pharmacology , Vascular Cell Adhesion Molecule-1/metabolism , rac1 GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL