Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters











Publication year range
1.
EFSA J ; 22(8): e8960, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39104808

ABSTRACT

The EFSA Panel on Food Contact Materials (FCM) assessed the safety of the substances 'wax, rice bran, oxidised' and 'wax, rice bran, oxidised, calcium salt', used as additives up to 0.3% in polyethylene terephthalate (PET), polyamide (PA), thermoplastic polyurethane (TPU), polylactic acid (PLA) and poly(vinyl chloride) (PVC) in contact with all food types for long-term storage at room temperature and below, after hot-fill and/or heating. The substances consist of the chemical classes wax esters, carboxylic acids, alcohols and calcium salts of acids, along with an unidentified organic fraction up to ■■■■■ w/w. Migration into 10% ethanol and 4% acetic acid was below 0.012 mg/kg for each chemical class, and about 0.001 mg/kg for the unidentified fraction. In isooctane, migration was up to 0.297 mg/kg food for wax esters, below 0.01 mg/kg food for the other chemical classes and about 0.02 mg/kg food for the unidentified fraction. The contact with dry food and food simulated by 20% ethanol were considered covered by the migration tests with aqueous simulants. Based on genotoxicity assays and compositional analyses, the constituents of the chemical classes did not raise a concern for genotoxicity. The potential migration of individual constituents or groups of chemically-related compounds of the unidentified fraction would result in exposures below (for aqueous food) and above (for fatty food) the threshold of toxicological concern for genotoxic carcinogens. Therefore, the FCM Panel concluded that the substances are not of safety concern for the consumer, if used as additives up to 0.3% w/w in PET, PLA and rigid PVC materials and articles intended for contact with all food types except for fatty foods, for long-term storage at room temperature and below, including hot-fill and/or heating up to 100°C for up to 2 h.

2.
EFSA J ; 22(7): e8879, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39081816

ABSTRACT

In the context of entry into force of Regulation (EU) 2022/1616, EFSA updated the scientific guidance to assist applicants in the preparation of applications for the authorisation or for the modification of an existing authorisation of a 'post-consumer mechanical PET' recycling process (as defined in Annex I of Regulation (EU) 2022/1616) intended to be used for manufacturing materials and articles intended to come into contact with food. This Guidance describes the evaluation criteria and the scientific evaluation approach that EFSA will apply to assess the decontamination capability of recycling processes, as well as the information required to be included in an application dossier. The principle of the scientific evaluation approach is to apply the decontamination efficiency of a recycling process, obtained from a challenge test with surrogate contaminants, to a reference contamination level for post-consumer PET, set at 3 mg/kg PET for a contaminant resulting from possible misuse. The resulting residual concentration of each surrogate in recycled PET is then compared to a modelled concentration in PET that is calculated using generally recognised conservative migration models, such that the related migration does not give rise to a dietary exposure exceeding 0.0025 µg/kg body weight (bw) per day. This is the lowest threshold for toxicological concern (TTC) value, i.e. for potential genotoxicity, below which the risk to human health would be negligible. The information to be provided in the applications relates to: the recycling process (i.e. collection and pre-processing of the input, decontamination process, post-processing and intended use); the determination of the decontamination efficiency by the challenge test; the self-evaluation of the recycling process. On the basis of the submitted data, EFSA will assess the safety of the mechanical PET recycling process.

3.
EFSA J ; 22(7): e8878, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966136

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Fucine Film (EU register number RECYC322), which uses the Reifenhäuser technology. The input material consists of hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are extruded under vacuum into sheets. The recycled sheets are intended to be used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, excluded drinking water and beverages, for long-term storage at room temperature, with or without hotfill. Based on the limited data available, the Panel concluded that the information submitted to EFSA was inadequate to demonstrate that the recycling process Fucine Film is able to reduce potential unknown contamination of the input PET flakes to a concentration that does not pose a risk to human health.

4.
EFSA J ; 22(4): e8694, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576538

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the substance 'phosphorous acid, triphenyl ester, polymer with 1,4-cyclohexanedimethanol and polypropylene glycol, C10-16 alkyl esters', when used as an additive in all types of polyolefins. The substance is a polymer containing ≤ 13% w/w of a low molecular weight fraction (LMWF, < 1000 Da). A polyethylene sample with 0.15% w/w of the substance was used in a comprehensive set of migration tests with food simulants. The specific migration was up to 0.014 and 0.023 mg/kg in 4% acetic acid and 10% ethanol, respectively. Migration into olive oil was estimated by the Panel to be up to 5.3 mg/kg under worst-case conditions of use. The migrating LMWF species were comprehensively identified. Those without phosphorous were either without alerts for genotoxicity or listed in Regulation (EU) 10/2011 with worst-case migrations well below their respective specific migration limits. Toxicological studies were performed using phosphite and phosphate versions of the substance enriched in its LMWF. The substance does not raise a concern for genotoxicity. From a repeated dose 90-day oral toxicity study in rats with a 50:50 phosphite:phosphate blend, the Panel identified a NOAEL of 250 mg/kg bw per day for each component of the blend. No delayed neurotoxicity in hens was observed. The CEP Panel concluded that the substance does not raise a safety concern for the consumer if its LMWF is not higher than 13% w/w, if it is used at up to 0.15% w/w in polyolefin materials and articles intended for contact with all food types, except for infant formula and human milk, for long-term storage at room temperature and below, after hot-fill and/or heating up to 100°C for up to 2 h, and if its migration does not exceed 5 mg/kg food.

5.
EFSA J ; 22(4): e8703, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38660016

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of mixtures of 1,9-nonanediamine (NMDA) and 2-methyl-1,8-octanediamine (MODA) when used to produce polyamide food contact materials for contact with all food types for long-term storage at room temperature and below, including heating up to 121°C for up to 2 h. The polyamide material is also intended to be used for repeated use up to 121°C with short contact (up to 30 min). The polymer typically contains ■■■■■ of a low molecular weight fraction (LMWF, < 1000 Da). The specific migration was measured with polyamide samples in a set of migration tests with 3% acetic acid and 10% ethanol. NMDA and MODA were not detected at ■■■■■, respectively. The specific migration of the LMWF consisting of NMDA/MODA-related species was up to ■■■■■. The overall migration in olive oil was below the detection limit (3 mg/dm2). The most abundant migrating LMWF oligomers were identified. Toxicological studies were performed with NMDA, MODA and with polyamide formulations enriched in the LMWF. The results of genotoxicity assays did not raise a concern. From a repeated-dose oral 90-day toxicity study in rats, the Panel identified a no observed adverse effect level (NOAEL) of 1000 mg/kg body weight per day for the migrating LMWF. The CEP Panel concluded that NMDA/MODA mixtures do not raise a safety concern for the consumer when used as comonomer with terephthalic acid to manufacture polyamide articles intended for contact with all food types, except for infant formula and human milk, if the migration of NMDA and MODA does not exceed 0.05 mg/kg food (as a sum of the two substances) and if the migration of the LMWF consisting of NMDA/MODA-related species does not exceed 5 mg/kg food.

6.
EFSA J ; 21(10): e08261, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37809352

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Concept Plastics Packaging (EU register number RECYC300), which uses the Gneuss 2 technology. The input consists of washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are extruded ■■■■■ into sheets. Having examined the challenge test provided, the Panel concluded that the decontamination in the extruder ■■■■■ is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance are the pressure, the temperature, the throughput, the rotor speed and the satellite screws speed. It was demonstrated that this recycling process is able to ensure a level of migration of potential unknown contaminants into food below the conservatively modelled migration of 0.10 µg/kg food, derived from the exposure scenario for infants, when such recycled PET is used at up to 90% in mixtures with virgin PET, and of 0.15 µg/kg food, derived from the exposure scenario for toddlers, when such recycled PET is used at up to 100%. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used for the manufacture of materials and articles at up to (a) 100% for contact with all types of foodstuffs except drinking water and (b) 90% in mixtures with virgin PET for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. The final articles made of this recycled PET are not intended to be used in microwave and conventional ovens and such uses are not covered by this evaluation.

7.
EFSA J ; 21(10): e08263, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37799761

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Umincorp (EU register number RECYC302), which uses the NGR technology. The input consists of washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are dried (step 2), melted in an extruder (step 3) and decontaminated during a melt-state polycondensation step ■■■■■ (step 4). In step 5, the melt is cooled down and granulated. Having examined the challenge test provided, the Panel concluded that the melt-state polycondensation (step 4) is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance are the pressure, the temperature, the residence time (depending on the mass and throughput of the melt) and the characteristics of the reactor. It was demonstrated by the challenge test that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.1 µg/kg food. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature, with or without hotfill. The final articles made of this recycled PET are not intended to be used in microwave and conventional ovens and such uses are not covered by this evaluation.

8.
EFSA J ; 21(8): e08159, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37554418

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process RE-PETKunststoffrecycling (EU register number RECYC286), which uses the Gneuss 4 technology. The input consists of washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are melted in an extruder (step 2) and decontaminated during a melt-state polycondensation step under ■■■■■ and vacuum (step 3) and finally pelletised. Having examined the challenge test provided, the Panel concluded that the melt-state polycondensation (step 3) is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of the critical step are the pressure, the temperature, the residence time and the characteristics of the reactor. It was demonstrated by the challenge test that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.1 µg/kg food. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. The final articles made of this recycled PET are not intended to be used in microwave and conventional ovens and such uses are not covered by this evaluation.

9.
EFSA J ; 21(8): e08158, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37554420

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process ISKO (EU register number RECYC287), which uses the Gneuss 4 technology. The input consists of washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are melted in an extruder (step 2), decontaminated during a melt-state polycondensation step ■■■■■ and vacuum (step 3) and finally pelletised. Having examined the challenge test provided, the Panel concluded that the melt-state polycondensation (step 3) is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of the critical step are the pressure, the temperature, the residence time and the characteristics of the reactor. It was demonstrated by the challenge test that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.1 µg/kg food. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature or below, with or without hotfill. The final articles made of this recycled PET are not intended to be used in microwave and conventional ovens and such uses are not covered by this evaluation.

10.
EFSA J ; 21(8): e08165, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37539078

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Silver Plastics (EU register number RECYC299), which uses the Reifenhäuser technology. The input material consists of hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, including no more than 5% PET from non-food consumer applications. The flakes are extruded under vacuum into sheets. Having examined the challenge test provided, the Panel concluded that the decontamination in the extruder under vacuum degassing (step 2), for which a challenge test was provided, is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance are temperature, pressure and throughput. The Panel concluded that this recycling process is able to ensure a level of exposure to potential unknown contaminants from food below 0.0025 µg/kg bw per day, when such recycled PET is used from 15% to 100% in mixtures with virgin PET, depending on the specific intended application. Therefore, the Panel concluded that the recycled PET obtained from this process is not considered to be of safety concern when used from 15% to 100% in mixtures with virgin PET for the manufacture of materials and articles depending on the specific intended application. Articles made of this recycled PET are not intended to be used in microwave and conventional ovens and such uses are not covered by this evaluation.

11.
EFSA J ; 21(7): e08087, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37405173

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process CCH CIRCULARPET (EU register number RECYC284), which uses the NGR technology. The input is washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are dried (step 2), melted in an extruder (step 3) and decontaminated during a melt-state polycondensation step ■■■■■ (step 4). In step 5, the material is granulated. Having examined the challenge test provided, the Panel concluded that the melt-state polycondensation (step 4) is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of the critical step are the pressure, the temperature, the residence time (depending on the mass and throughput of the melt) and the characteristics of the reactor. It was demonstrated that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.1 µg/kg food. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature, with or without hotfill. The final articles made of this recycled PET are not intended to be used in microwave and conventional ovens and such uses are not covered by this evaluation.

12.
EFSA J ; 21(7): e08088, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37405175

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Coca-Cola HBC (EU register number RECYC285), which uses the NGR technology. The input is washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are dried (step 2), melted in an extruder (step 3) and decontaminated during a melt-state polycondensation step ■■■■■ (step 4). In step 5, the material is granulated. Having examined the challenge test provided, the Panel concluded that the melt-state polycondensation (step 4) is critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of the critical step are the pressure, the temperature, the residence time (depending on the mass and throughput of the melt) and the characteristics of the reactor. It was demonstrated that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.1 µg/kg food. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long-term storage at room temperature, with or without hotfill. The final articles made of this recycled PET are not intended to be used in microwave and conventional ovens and such uses are not covered by this evaluation.

13.
EFSA J ; 21(2): e07761, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36743686

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP Panel) assessed the safety of the 'waxes, paraffinic, refined, derived from petroleum-based or synthetic hydrocarbon feedstock, low viscosity' (FCM No. 93), for which the uses were requested to be extended for articles in contact with fatty foods. Migration from low-density polyethylene samples containing 1% w/w of a representative wax was tested in food simulants. In fatty food simulants, the migration of mineral oil saturated hydrocarbons (MOSH) ≤ C35 was 142 mg/kg food, exceeding the overall migration limit for plastic FCM. Mineral oil aromatic hydrocarbons (MOAH) with at least two rings are largely removed during the manufacturing process. Based on various lines of evidence, the Panel concluded that any concern for the potential presence of MOAH with two or more conjugated aromatic rings can be ruled out. Based on the genotoxicity studies and on the content of polycyclic aromatic hydrocarbons (PAHs), the substance does not raise a concern for genotoxicity. Available toxicokinetic data showed a limited accumulation of MOSH. No adverse effects were observed up to the highest tested dose of 9 g/kg body weight per day in a 90-day repeated oral toxicity study in Sprague-Dawley rats. The available results showed that FCM No. 93 is devoid of endocrine activity. The provided information on chronic toxicity and carcinogenicity was limited and inadequate to reach conclusions on these endpoints. Therefore, the CEP Panel concluded that under the intended and tested conditions of uses, the substance does not raise safety concern for the consumer if used to a level ensuring that its migration into food is no more than 5 mg/kg.

14.
EFSA J ; 20(12): e07654, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36514361

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process EcoBlue (EU register number RECYC266, which uses the Starlinger PET direct iV+ technology). The input is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are extruded to pellets, which are then crystallised, preheated and treated in a solid-state polycondensation (SSP) reactor. Having examined the challenge test provided, the Panel concluded that the three steps, extrusion, crystallisation and SSP, are critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of these critical steps are temperature, gas/PET ratio, pressure and residence time. The challenge test demonstrated that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.1 µg/kg food. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern, when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs for long-term storage at room temperature, with or without hotfill. The final articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

15.
EFSA J ; 20(8): e07472, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35978617

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process Verdeco Recycling (EU register number RECYC241), which uses the Starlinger PET direct iV+ technology. The input is hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are extruded to pellets, which are then crystallised, preheated and treated in a solid-state polycondensation (SSP) reactor. Having examined the challenge test provided, the Panel concluded that the three steps, extrusion, crystallisation and SSP, are critical in determining the decontamination efficiency of the process. The operating parameters to control the performance of these critical steps are temperature, gas flow, pressure and residence time. The challenge test demonstrated that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.1 µg/kg food. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern, when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs for long-term storage at room temperature, with or without hotfill. The final articles made of this recycled PET are not intended to be used in microwave or conventional ovens and such uses are not covered by this evaluation.

16.
EFSA J ; 20(2): e07135, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35228849

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the substance 'nano precipitated calcium carbonate', FCM substance No. 1087, the particles size of which is in the range of ■■■■■, with a median of ■■■■■. The substance is intended to be used as a filler in all plastics at up to 5% w/w for contact with acidic food and at up to 40% w/w for contact with all other types of food. Articles made with the substance are intended for long-term storage at room temperature or below. The particulate form of the calcium carbonate dissolved rapidly under simulated gastric conditions and, therefore, in accordance with the EFSA Guidance on Particle - Technical Requirements (2021), an assessment of the particles in nanoform is not required and a conventional risk assessment is sufficient. Calcium carbonate, not in nanoform, is authorised for use in plastic FCM without specific migration limit (FCM No. 21) and for use as a food additive (E 170). Migration, from low-density polyethylene (LDPE) containing 40% of the substance, was below 0.03 mg/kg in isooctane and 95% ethanol, and 5.4 mg/kg in 10% ethanol. For LDPE containing 5% of the substance, corresponding to the maximum intended amount for contact with acidic foods, the migration was 17 mg/kg. Therefore, the CEP Panel concluded that the substance nano precipitated calcium carbonate is not of safety concern for consumers when used as a filler in all types of polymer for all types of food, except for infant food formulae. The Panel noted, however, that for acidic foods, the overall migration limit may be exceeded.

17.
EFSA J ; 20(3): e07172, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35281645

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the substance diethyl[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methyl] phosphonate, FCM substance No. 1007, which is intended to be used in the polymerisation reaction to make poly(ethylene 2,5-furandicarboxylate) (PEF) plastic. The substance is intended to become a component of the backbone of the polymer and has an antioxidant function that provides thermal stability to the polyester during heat processing. The resulting plastic is intended to be used in contact with all types of food under any condition of time and temperature. A PEF sample made using 0.1% w/w of the substance (which is the maximum intended use) was used in a comprehensive set of migration tests with food simulants. The migration of the substance was below the quantification limits estimated around 10 µg/kg. Solvent extraction tests showed no presence of impurities or breakdown products of the substance. The toxicological data provided are the same as those submitted by the same applicant and previously evaluated. The resulting assessment and conclusions are considered still valid by the CEP Panel. Therefore, the CEP Panel concluded that the substance diethyl[[3,5-bis(1,1-dimethylethyl)-4-hydroxyphenyl]methyl]phosphonate does not raise a safety concern for the consumer if used at up to 0.1% w/w (based on the weight of the polymer) in the polymerisation to make PEF intended for contact with all types of foods under any contact conditions.

18.
EFSA J ; 20(3): e07171, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35281648

ABSTRACT

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids assessed the safety of the substance bleached cellulose pulp, consisting of cellulose fibres (70-92%) and hemicellulose (8-30%) obtained from pine and spruce wood. The substance is intended to be used ■■■■■ in polyethylene and polypropylene food contact materials. The final articles are intended to be used for all food types and for long-term storage at room temperature, with or without a short time at higher temperature, including hot-fill. Low-density polyethylene samples containing ■■■■■ of the substance were subjected to a broad set of migration tests with food simulants and extraction tests with dichloromethane. The limits of detection ranged from ■■■■■ (when specified). The Panel noted that they do not ensure the detection of genotoxic substances at a concentration leading to a human exposure above the Threshold of Toxicological Concern. Moreover, not all possibly migrating substances were identified or amenable to the analytical methods applied. No toxicological data were provided for the substance itself, as its migration into food is not expected. The safety of the potentially migrating substances of low molecular mass detected was addressed individually and was considered adequate. However, the Panel considered this approach insufficient owing to a substantial fraction of unidentified components. The Panel concluded that the information provided by the applicant does not allow the safety assessment of the substances below 1,000 Da from bleached cellulose pulp from pine and spruce wood used in plastic food contact materials potentially migrating into food. Therefore, the Panel could not conclude on the safety of the use of bleached cellulose pulp from pine and spruce wood as a plastic additive.

19.
RSC Adv ; 11(32): 19351-19362, 2021 May 27.
Article in English | MEDLINE | ID: mdl-35479211

ABSTRACT

Rare earth elements (REEs) are critical raw materials with a wide range of industrial applications. As a result, the recovery of REEs via adsorption from REE-rich matrices, such as water streams from processed electric and electronic waste, has gained increased attention for its simplicity, cost-effectiveness and high efficacy. In this work, the potential of nanometric cerium oxide-based materials as adsorbents for selected REEs is investigated. Ultra-small cerium oxide nanoparticles (CNPs, mean size diameter ≈ 3 nm) were produced via a precipitation-hydrothermal procedure and incorporated into woven-non-woven polyvinyl alcohol (PVA) nanofibres (d ≈ 280 nm) via electrospinning, to a final loading of ≈34 wt%. CNPs, CNP-PVA and the benchmark material CeO2 NM-212 (JRCNM02102, mean size diameter ≈ 28 nm) were tested as adsorbents for aqueous solutions of the REEs Eu3+, Gd3+ and Yb3+ at pH 5.8. Equilibrium adsorption data were interpreted by means of Langmuir and Freundlich data models. The maximum adsorption capacities ranged between 16 and 322 mgREE gCeO2 -1, with the larger value found for the adsorption of Yb3+ by CNP. The trend of maximum adsorption capacity was CNPs > NM-212 > CNP-PVA, which was ascribed to different agglomeration and surface area available for adsorption. Langmuir equilibrium constants K L were substantially larger for CNP-PVA, suggesting a potential higher affinity of REEs for CNPs due to a synergistic effect of PVA on adsorption. CNP-PVA were effectively used in repeated adsorption cycles under static and dynamic configurations and retained the vast majority of adsorptive material (>98% of CeO2 retained after 10 adsorption cycles). The small loss was attributed to partial solubilisation of fibre components with change in membrane morphology. The findings of this study pave the way for the application of CNP-PVA nanocomposites in the recovery of strategically important REEs from electrical and electronic waste.

20.
Nanoscale ; 12(7): 4695-4708, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32049073

ABSTRACT

Grouping and read-across has emerged as a reliable approach to generate safety-related data on nanomaterials (NMs). However, its successful implementation relies on the availability of detailed characterisation of NM physicochemical properties, which allows the definition of groups based on read-across similarity. To this end, this study assessed the availability and completeness of existing (meta)data on 11 experimentally determined physicochemical properties and 18 NMs. Data on representative NMs were mainly extracted from existing datasets stored in the eNanoMapper database, now available on the European Observatory on Nanomaterials website, while data on case-study NMs were provided by their industrial manufacturers. The extent of available (meta)data was assessed and data gaps were identified, thereby determining future testing needs. Data completeness was assessed by using the information checklists included in the templates for data logging developed by the EU-funded projects NANoREG and GRACIOUS. A completeness score (CS) between 0 and 1 was calculated for each (meta)data unit, template section, property, technique and NM. The results show a heterogeneous distribution of available (meta)data across materials and properties, with none of the selected NMs fully characterised. The average CS calculated for representative NMs (0.43) was considerably lower than for case-study NMs (0.68). The low CS was largely caused by missing information on sample preparation and standard operating procedures, and was attributed to a lack of harmonised data reporting and entry procedure. This study therefore suggests that a persistent use of well-defined and harmonised reporting schemes for experimental results is a useful tool to increase (meta)data completeness and ensure their integration and reuse.

SELECTION OF CITATIONS
SEARCH DETAIL