Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 79(9): 2339-2351, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30862722

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common cancer in children. The highest rates of treatment failure occur in specific genetic subsets of ALL, including hypodiploid B-cell ALL (B-ALL), for which effective alternative therapies to current intensive chemotherapy treatments have yet to be developed. Here, we integrated biochemical and genomic profiling with functional drug assays to select effective agents with therapeutic potential against hypodiploid B-ALL. ABT-199, a selective Bcl-2 inhibitor, was effective in reducing leukemic burden in vitro and in vivo in patient-derived xenograft models of hypodiploid B-ALL. Daily oral treatment with ABT-199 significantly increased survival in xenografted mice. The unexpected efficacy of ABT-199 observed in hypodiploid leukemias lacking BIM expression (the major reported mediator of ABT-199-induced apoptosis) led us to investigate the mechanism of action of ABT-199 in the absence of BIM. Treatment with ABT-199 elicited responses in a dose-dependent manner, from cell-cycle arrest at low nanomolar concentrations to cell death at concentrations above 100 nmol/L. Collectively, these results demonstrate the efficacy of Bcl-2 inhibition and potential therapeutic strategy in hypodiploid B-ALL. SIGNIFICANCE: These results demonstrate the efficacy of ABT-199 in vivo and provide encouraging preclinical data of Bcl-2 as a potential target for the treatment of hypodiploid B-ALL.


Subject(s)
Antineoplastic Agents/pharmacology , Diploidy , Leukemia, Experimental/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Lineage , Cell Proliferation , Humans , Leukemia, Experimental/metabolism , Leukemia, Experimental/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Article in English | MEDLINE | ID: mdl-28003275

ABSTRACT

Acute lymphoblastic leukemia (ALL) is an aggressive neoplasm of B- or T-lymphoid progenitors and is the commonest childhood tumor. ALL comprises multiple subtypes characterized by distinct genetic alterations, with stereotyped patterns of aneuploidy present in many cases. Although alterations of TP53 are common in many tumors, they are infrequent in ALL, with the exception of two ALL subtypes associated with poor outcome: relapsed disease and ALL with hypodiploidy. TP53 alterations are present in almost all cases of ALL with low hypodiploidy and are associated with alterations of the lymphoid transcription factor IKZF2 and the tumor-suppressor gene loci CDKN2A and CDKN2B. Remarkably, more than half of TP53 mutations in low-hypodiploid ALL in children are present in nontumor cells, indicating that low-hypodiploid ALL is a manifestation of Li-Fraumeni syndrome. These findings have profound implications for our understanding of the genetic pathogenesis of hypodiploid ALL, suggesting that alteration of TP53 function may promote the distinctive aneuploidy characteristic of hypodiploid ALL. Moreover, the identification of hypodiploidy mandates offering testing for TP53 mutational status to patients and their relatives, with appropriate counseling and disease surveillance.


Subject(s)
Li-Fraumeni Syndrome/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcription Factors/genetics , Tumor Suppressor Protein p53/genetics , Aneuploidy , Humans , Mutation
3.
Oncotarget ; 7(52): 86660-86674, 2016 Dec 27.
Article in English | MEDLINE | ID: mdl-27893431

ABSTRACT

Tyrosyl-DNA phosphodiesterase I (TDP1) hydrolyzes the drug-stabilized 3'phospho-tyrosyl bond formed between DNA topoisomerase I (TOPO1) and DNA. TDP1-mediated hydrolysis uses a nucleophilic histidine (Hisnuc) and a general acid/base histidine (Hisgab). A Tdp1Hisgab to Arg mutant identified in patients with the autosomal recessive neurodegenerative disease SCAN1 causes stabilization of the TDP1-DNA intermediate. Based on our previously reported Hisgab-substitutions inducing yeast toxicity (Gajewski et al. J. Mol. Biol. 415, 741-758, 2012), we propose that converting TDP1 into a cellular poison by stabilizing the covalent enzyme-DNA intermediate is a novel therapeutic strategy for cancer treatment. Here, we analyzed the toxic effects of two TDP1 catalytic mutants in HEK293 cells. Expression of human Tdp1HisnucAla and Tdp1HisgabAsn mutants results in stabilization of the covalent TDP1-DNA intermediate and induces cytotoxicity. Moreover, these mutants display reduced in vitro catalytic activity compared to wild type. Co-treatment of Tdp1mutant with topotecan shows more than additive cytotoxicity. Overall, these results support the hypothesis that stabilization of the TDP1-DNA covalent intermediate is a potential anti-cancer therapeutic strategy.


Subject(s)
Phosphoric Diester Hydrolases/physiology , DNA/metabolism , DNA Damage , DNA Topoisomerases, Type I/physiology , HEK293 Cells , Humans , Topotecan/pharmacology
4.
J Biol Chem ; 290(10): 6203-14, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25609251

ABSTRACT

Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the repair of 3'-DNA adducts, such as the 3'-phosphotyrosyl linkage of DNA topoisomerase I to DNA. Tdp1 contains two conserved catalytic histidines: a nucleophilic His (His(nuc)) that attacks DNA adducts to form a covalent 3'-phosphohistidyl intermediate and a general acid/base His (His(gab)), which resolves the Tdp1-DNA linkage. A His(nuc) to Ala mutant protein is reportedly inactive, whereas the autosomal recessive neurodegenerative disease SCAN1 has been attributed to the enhanced stability of the Tdp1-DNA intermediate induced by mutation of His(gab) to Arg. However, here we report that expression of the yeast His(nuc)Ala (H182A) mutant actually induced topoisomerase I-dependent cytotoxicity and further enhanced the cytotoxicity of Tdp1 His(gab) mutants, including H432N and the SCAN1-related H432R. Moreover, the His(nuc)Ala mutant was catalytically active in vitro, albeit at levels 85-fold less than that observed with wild type Tdp1. In contrast, the His(nuc)Phe mutant was catalytically inactive and suppressed His(gab) mutant-induced toxicity. These data suggest that the activity of another nucleophile when His(nuc) is replaced with residues containing a small side chain (Ala, Asn, and Gln), but not with a bulky side chain. Indeed, genetic, biochemical, and mass spectrometry analyses show that a highly conserved His, immediately N-terminal to His(nuc), can act as a nucleophile to catalyze the formation of a covalent Tdp1-DNA intermediate. These findings suggest that the flexibility of Tdp1 active site residues may impair the resolution of mutant Tdp1 covalent phosphohistidyl intermediates and provide the rationale for developing chemotherapeutics that stabilize the covalent Tdp1-DNA intermediate.


Subject(s)
DNA Adducts/chemistry , DNA/genetics , Mutant Proteins/chemistry , Phosphoric Diester Hydrolases/genetics , Catalysis , Catalytic Domain/genetics , Crystallography, X-Ray , DNA/chemistry , DNA Adducts/genetics , DNA Damage/genetics , DNA Repair/genetics , DNA Topoisomerases, Type I/chemistry , DNA Topoisomerases, Type I/genetics , Humans , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Mutant Proteins/genetics , Phosphoric Diester Hydrolases/chemistry , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/pathology
5.
Drug Metab Rev ; 46(4): 494-507, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25327705

ABSTRACT

DNA is subject to a wide range of insults, resulting from endogenous and exogenous sources that need to be metabolized/resolved to maintain genome integrity. Tyrosyl-DNA phosphodiesterase I (Tdp1) is a eukaryotic DNA repair enzyme that catalyzes the removal of covalent 3'-DNA adducts. As a phospholipase D superfamily member Tdp1 utilizes two catalytic histidines each within a His-Lys-Asn motif. Tdp1 was discovered for its ability to hydrolyze the 3'-phospho-tyrosyl that in the cell covalently links DNA Topoisomerase I (Topo1) and DNA. Tdp1's list of substrates has since grown and can be divided into two groups: protein-DNA adducts, such as camptothecin stabilized Topo1-DNA adducts, and modified nucleotides, including oxidized nucleotides and chain terminating nucleoside analogs. Since many of Tdp1's substrates are generated by clinically relevant chemotherapeutics, Tdp1 became a therapeutic target for molecularly targeted small molecules. Tdp1's unique catalytic cycle allows for two different targeting strategies: (1) the intuitive inhibition of Tdp1 catalysis to prevent Tdp1-mediated repair of chemotherapeutically induced DNA adducts, thereby enhancing their toxicity and (2) stabilization of the Tdp1-DNA covalent reaction intermediate, prevents resolution of Tdp1-DNA adduct and increases the half-life of this potentially toxic DNA adduct. This concept is best illustrated by a catalytic Tdp1 mutant that forms the molecular basis of the autosomal recessive neurodegenerative disease spinocerebellar ataxia with axonal neuropathy, and results in an increased stability of its Tdp1-DNA reaction intermediate. Here, we will discuss Tdp1 catalysis from a structure-function perspective, Tdp1 substrates and Tdp1 potential as a therapeutic target.


Subject(s)
DNA Adducts/metabolism , DNA Topoisomerases, Type I/metabolism , Phosphoric Diester Hydrolases/metabolism , Animals , Biocatalysis , DNA Adducts/chemistry , Humans , Models, Molecular , Molecular Targeted Therapy , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/therapeutic use , Phosphoric Diester Hydrolases/chemistry
6.
J Mol Biol ; 415(4): 741-58, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22155078

ABSTRACT

Tyrosyl-DNA phosphodiesterase I (Tdp1) is a member of the phospholipase D superfamily that hydrolyzes 3'-phospho-DNA adducts via two conserved catalytic histidines-one acting as the lead nucleophile and the second acting as a general acid/base. Substitution of the second histidine specifically to arginine contributes to the neurodegenerative disease spinocerebellar ataxia with axonal neuropathy (SCAN1). We investigated the catalytic role of this histidine in the yeast protein (His432) using a combination of X-ray crystallography, biochemistry, yeast genetics, and theoretical chemistry. The structures of wild-type Tdp1 and His432Arg both show a phosphorylated form of the nucleophilic histidine that is not observed in the structure of His432Asn. The phosphohistidine is stabilized in the His432Arg structure by the guanidinium group that also restricts the access of nucleophilic water molecule to the Tdp1-DNA intermediate. Biochemical analyses confirm that His432Arg forms an observable and unique Tdp1-DNA adduct during catalysis. Substitution of His432 by Lys does not affect catalytic activity or yeast phenotype, but substitutions with Asn, Gln, Leu, Ala, Ser, and Thr all result in severely compromised enzymes and DNA topoisomerase I-camptothecin dependent lethality. Surprisingly, His432Asn did not show a stable covalent Tdp1-DNA intermediate that suggests another catalytic defect. Theoretical calculations revealed that the defect resides in the nucleophilic histidine and that the pK(a) of this histidine is crucially dependent on the second histidine and on the incoming phosphate of the substrate. This represents a unique example of substrate-activated catalysis that applies to the entire phospholipase D superfamily.


Subject(s)
Phospholipase D/chemistry , Phosphoric Diester Hydrolases/chemistry , Catalytic Domain/genetics , Crystallography, X-Ray , Histidine/chemistry , Histidine/genetics , Histidine/metabolism , Humans , Kinetics , Models, Biological , Models, Molecular , Molecular Dynamics Simulation , Multigene Family/genetics , Mutagenesis, Site-Directed , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Organisms, Genetically Modified , Phospholipase D/analysis , Phospholipase D/genetics , Phosphoric Diester Hydrolases/analysis , Phosphoric Diester Hydrolases/genetics , Yeasts/genetics , Yeasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...