Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Front Digit Health ; 5: 1258915, 2023.
Article En | MEDLINE | ID: mdl-38111608

Introduction: Respiratory diseases such as chronic obstructive pulmonary disease, obstructive sleep apnea syndrome, and COVID-19 may cause a decrease in arterial oxygen saturation (SaO2). The continuous monitoring of oxygen levels may be beneficial for the early detection of hypoxemia and timely intervention. Wearable non-invasive pulse oximetry devices measuring peripheral oxygen saturation (SpO2) have been garnering increasing popularity. However, there is still a strong need for extended and robust clinical validation of such devices, especially to address topical concerns about disparities in performances across racial groups. This prospective clinical validation aimed to assess the accuracy of the reflective pulse oximeter function of the EmbracePlus wristband during a controlled hypoxia study in accordance with the ISO 80601-2-61:2017 standard and the Food & Drug Administration (FDA) guidance. Methods: Healthy adult participants were recruited in a controlled desaturation protocol to reproduce mild, moderate, and severe hypoxic conditions with SaO2 ranging from 100% to 70% (ClinicalTrials.gov registration #NCT04964609). The SpO2 level was estimated with an EmbracePlus device placed on the participant's wrist and the reference SaO2 was obtained from blood samples analyzed with a multiwavelength co-oximeter. Results: The controlled hypoxia study yielded 373 conclusive measurements on 15 subjects, including 30% of participants with dark skin pigmentation (V-VI on the Fitzpatrick scale). The accuracy root mean square (Arms) error was found to be 2.4%, within the 3.5% limit recommended by the FDA. A strong positive correlation between the wristband SpO2 and the reference SaO2 was observed (r = 0.96, P < 0.001), and a good concordance was found with Bland-Altman analysis (bias, 0.05%; standard deviation, 1.66; lower limit, -4.7%; and upper limit, 4.8%). Moreover, acceptable accuracy was observed when stratifying data points by skin pigmentation (Arms 2.2% in Fitzpatrick V-VI, 2.5% in Fitzpatrick I-IV), and sex (Arms 1.9% in females, and 2.9% in males). Discussion: This study demonstrates that the EmbracePlus wristband could be used to assess SpO2 with clinically acceptable accuracy under no-motion and high perfusion conditions for individuals of different ethnicities across the claimed range. This study paves the way for further accuracy evaluations on unhealthy subjects and during prolonged use in ambulatory settings.

2.
Bioengineering (Basel) ; 9(3)2022 Feb 26.
Article En | MEDLINE | ID: mdl-35324783

The correct estimation of the distensibility of deformable aorta replicas is a challenging issue, in particular when its local characterization is necessary. We propose a combined in-vitro and in-silico approach to face this problem. First, we tested an aortic silicone arch in a pulse-duplicator analyzing its dynamics under physiological working conditions. The aortic flow rate and pressure were measured by a flow meter at the inlet and two probes placed along the arch, respectively. Video imaging analysis allowed us to estimate the outer diameter of the aorta in some sections in time. Second, we replicated the in-vitro experiment through a Fluid-Structure Interaction simulation. Observed and computed values of pressures and variations in aorta diameters, during the cardiac cycle, were compared. Results were considered satisfactory enough to suggest that the estimation of local distensibility from in-silico tests is reliable, thus overcoming intrinsic experimental limitations. The aortic distensibility (AD) is found to vary significantly along the phantom by ranging from 3.0 × 10-3 mmHg-1 in the ascending and descending tracts to 4.2 × 10-3 mmHg-1 in the middle of the aortic arch. Interestingly, the above values underestimate the AD obtained in preliminary tests carried out on straight cylindrical samples made with the same material of the present phantom. Hence, the current results suggest that AD should be directly evaluated on the replica rather than on the samples of the adopted material. Moreover, tests should be suitably designed to estimate the local rather than only the global distensibility.

3.
Int J Numer Method Biomed Eng ; 38(1): e3536, 2022 01.
Article En | MEDLINE | ID: mdl-34599558

Pregnancy is a unique and dynamic process characterized by significant changes in the maternal cardiovascular system that are required to satisfy the increased maternal and fetal metabolic demands. Profound structural and hemodynamic adaptations occur during healthy pregnancy that allows the mother to maintain healthy hemodynamics and provide an adequate uteroplacental blood circulation to ensure physiological fetal development. Investigating these adaptations is crucial for understanding the physiology of pregnancy and may provide important insights for the management of high-risk pregnancies. However, no previous modeling studies have investigated the maternal cardiac structural changes that occur during gestation. This study, therefore, had two aims. The first was to develop a lumped parameter model of the whole maternal circulation that is suitable for studying global hemodynamics and cardiac function at different stages of gestation. The second was to test the hypothesis that myofiber stress and wall shear stress homeostasis principles can be used to predict cardiac remodeling that occurs during normal pregnancy. Hemodynamics and cardiac variables predicted from simulations with and without controlled cardiac remodeling algorithms were compared and evaluated with reference clinical data. While both models reproduced the hemodynamic variations that arise in pregnancy, importantly, we show that the structural changes that occur with pregnancy could be predicted by assuming invariant homeostatic "target" values of myocardial wall stress and chamber wall shear stress.


Heart Ventricles , Ventricular Remodeling , Female , Heart , Hemodynamics/physiology , Homeostasis , Humans , Pregnancy
4.
PLoS One ; 16(10): e0258225, 2021.
Article En | MEDLINE | ID: mdl-34653194

BACKGROUND: Right (R) or left (L) ventricular outflow tract (VOT) obstruction can be either a dynamic phenomenon or a congenital anatomic lesion, which requires a prompt and optimal timing of treatment to avoid a pathological ventricular remodelling. OBJECTIVE: To develop a simple and reliable numerical tool able to relate the R/L obstruction size with the pressure gradient and the cardiac output. To provide indication of the obstruction severity and be of help in the clinical management of patients and designing the surgical treatment for obstruction mitigation. METHODS: Blood flow across the obstruction is described according to the classical theory of one-dimensional flow, with the obstruction uniquely characterized by its size. Hemodynamics of complete circulation is simulated according to the lumped parameter approach. The case of a 2 years-old baby is reproduced, with the occlusion placed in either the R/ or the L/VOT. Conditions from wide open to almost complete obstruction are reproduced. RESULTS: Both R/LVOT obstruction in the in-silico model resulted in an increased pressure gradient and a decreased cardiac output, proportional to the severity of the VOT obstruction and dependent on the R/L location of the obstruction itself, as it is clinically observed. CONCLUSION: The in-silico model of ventricular obstruction which simulates pressure gradient and/or cardiac output agrees with clinical data, and is a first step towards the creation of a tool that can support the clinical management of patients from diagnosis to surgical treatments.


Computer Simulation , Hemodynamics/physiology , Models, Cardiovascular , Ventricular Outflow Obstruction/physiopathology , Cardiac Output/physiology , Child , Heart Ventricles/physiopathology , Humans , Pressure , Pulmonary Artery/physiopathology
5.
Bioengineering (Basel) ; 8(8)2021 Jul 21.
Article En | MEDLINE | ID: mdl-34436104

(1) Background: The realization of appropriate aortic replicas for in vitro experiments requires a suitable choice of both the material and geometry. The matching between the grade of details of the geometry and the mechanical response of the materials is an open issue that deserves attention. (2) Methods: To explore this issue, we performed a series of Fluid-Structure Interaction simulations, which compared the dynamics of three aortic models. Specifically, we reproduced a patient-specific geometry with a wall of biological tissue or silicone, and a parametric geometry based on in vivo data made in silicone. The biological tissue and the silicone were modeled with a fiber-oriented anisotropic and isotropic hyperelastic model, respectively. (3) Results: Clearly, both the aorta's geometry and its constitutive material contribute to the determination of the aortic arch deformation; specifically, the parametric aorta exhibits a strain field similar to the patient-specific model with biological tissue. On the contrary, the local geometry affects the flow velocity distribution quite a lot, although it plays a minor role in the helicity along the arch. (4) Conclusions: The use of a patient-specific prototype in silicone does not a priori ensure a satisfactory reproducibility of the real aorta dynamics. Furthermore, the present simulations suggest that the realization of a simplified replica with the same compliance of the real aorta is able to mimic the overall behavior of the vessel.

6.
Sci Rep ; 11(1): 3709, 2021 02 12.
Article En | MEDLINE | ID: mdl-33580128

The role played by the right ventricular (RV) dysfunction has long been underestimated in clinical practice. Recent findings are progressively confirming that when the RV efficiency deteriorates both the right and the left circulation is (significantly) affected, but studies dedicated to a detailed description of RV hemodynamic role still lack. In response to such a gap in knowledge, this work proposes a numerical model that for the first time evaluates the effect of isolated RV dysfunction on the whole circulation. Lumped parameter modelling was applied to represent the physio-pathological hemodynamics. Different grades of impairment were simulated for three dysfunctions i.e., systolic, diastolic, and combined systolic and diastolic. Hemodynamic alterations (i.e., of blood pressure, flow, global hemodynamic parameters), arising from the dysfunctions, are calculated and analysed. Results well accord with clinical observations, showing that RV dysfunction significantly affects both the pulmonary and systemic hemodynamics. Successful verification against in vivo data proved the clinical potentiality of the model i.e., the capability of identifying the degree of RV impairment for given hemodynamic conditions. This study aims at contributing to the improvement of RV dysfunction recognition and treatment, and to the development of tools for the clinical management of pathologies involving the right heart.


Models, Cardiovascular , Ventricular Dysfunction, Left , Ventricular Function, Left , Humans
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2654-2657, 2020 07.
Article En | MEDLINE | ID: mdl-33018552

Historically, cardiovascular computational models have been developed considering the case of a 70 Kg male patient. However, hemodynamic quantities differ widely due to sex, age, and weight. In this study, we developed a female-specific model of the blood circulation of a young (18-40 y.o.) woman with BSA of 1.6 m2. The lumped-parameter (0D) model, which includes the uterus, has been calibrated with female-specific parameters and validated with sex-specific literature data.


Hemodynamics , Models, Cardiovascular , Female , Humans
...