Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 640
Filter
3.
Diabetes ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905153

ABSTRACT

Despite advances in the treatment of atherosclerotic cardiovascular disease, it remains the leading cause of death in patients with diabetes. Even when risk factors are mitigated, the disease progresses, and thus newer targets need to be identified that directly inhibit the underlying pathobiology of atherosclerosis in diabetes. A single cell sequencing approach was utilised to distinguish the proatherogenic transcriptional profile in aortic cells in diabetes using a streptozotocin induced-diabetic Apoe-/- mouse model. Human carotid endarterectomy specimens from individuals with and without diabetes were also evaluated via immunohistochemical analysis. Further mechanistic studies were performed in human aortic endothelial cells and human THP-1 derived macrophages. We then performed a preclinical study using an AP-1 inhibitor in a diabetic Apoe-/- mouse model. Single cell RNA sequencing analysis identified the AP-1 complex as a novel target in diabetes-associated atherosclerosis. AP-1 levels were elevated in carotid endarterectomy specimens from diabetic when compared to non-diabetic individuals. AP-1 was validated as a mechanosensitive transcription factor via immunofluorescence staining for regional heterogeneity of endothelial cells of the aortic region exposed to turbulent blood flow and by performing microfluidics experiments in HAECs. AP-1 inhibition with T-5224 blunted endothelial cell activation as assessed by a monocyte adhesion assay and expression of genes relevant to endothelial function. Furthermore, AP-1 inhibition attenuated foam cell formation. Critically, treatment with T-5224 attenuated atherosclerosis development in diabetic Apoe-/- mice. This study has identified the AP-1 complex as a novel target, inhibition of which treats the underlying pathobiology of atherosclerosis in diabetes.

4.
Diabetes Obes Metab ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899425

ABSTRACT

Diabetic nephropathy, also known as diabetic kidney disease (DKD), remains a challenge in clinical practice as this is the major cause of kidney failure worldwide. Clinical trials do not answer all the questions raised in clinical practice and real-world evidence provides complementary insights from randomized controlled trials. Real-life longitudinal data highlight the need for improved screening and management of diabetic nephropathy in primary care. Adherence to the recommended guidelines for comprehensive care appears to be suboptimal in clinical practice in patients with DKD. Barriers to the initiation of sodium-glucose cotransporter-2 (SGLT2) inhibitors for patients with DKD persist in clinical practice, in particular for the elderly. Attainment of blood pressure targets often remains an issue. Initiation of glucagon-like peptide-1 receptor agonists (GLP-1RAs) in routine clinical practice is associated with a reduced risk of albuminuria progression and a possible beneficial effect on kidney function. Real-world evidence confirms a beneficial effect of SGLT2 inhibitors on the decline of glomerular filtration, even in the absence of albuminuria, with a lower risk of acute kidney injury events compared to GLP-1RA use. In addition, SGLT2 inhibitors confer a lower risk of hyperkalaemia after initiation compared with dipeptidyl peptidase-4 inhibitors in patients with DKD. Data from a large population indicate that diuretic treatment increases the risk of a significant decline in glomerular filtration rate in the first few weeks of treatment after SGLT2 inhibitor initiation. The perspective for a global approach targeting multifaceted criteria for diabetic individuals with DKD is emerging based on real-world evidence but there is still a long way to go to achieve this goal.

5.
J Hypertens ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747424

ABSTRACT

Hypertension is often linked with metabolic risk factors that share common pathophysiological pathways. Despite wide-spread availability of multiple drug classes, optimal blood pressure (BP) control remains challenging. Increased central sympathetic outflow is frequently neglected as a critical regulator of both circulatory and metabolic pathways and often remains unopposed therapeutically. Selective imidazoline receptor agonists (SIRAs) effectively reduce BP with a favorable side effect profile compared with older centrally acting antihypertensive drugs. Hard outcome data in hypertension, such as prevention of stroke, heart and kidney diseases, are not available with SIRAs. However, in direct comparisons, SIRAs were as effective as angiotensin-converting enzyme inhibitors, ß-blockers, calcium channel blockers, and diuretics in lowering BP. Other beneficial effects on metabolic parameters in hypertensive patients with concomitant overweight and obesity have been documented with SIRAs. Here we review the existing evidence on the safety and efficacy of moxonidine, a widely available SIRA, compared with common antihypertensive agents and provide a consensus position statement based on inputs from 12 experts from Europe and Australia on SIRAs in hypertension management.

6.
Ther Adv Respir Dis ; 18: 17534666241232264, 2024.
Article in English | MEDLINE | ID: mdl-38698565

ABSTRACT

What is this summary about?This summary describes the results of a clinical study called MANDALA that was published in the New England Journal of Medicine in 2022. In the MANDALA study, researchers looked at a new asthma rescue inhaler that contains both albuterol and budesonide in a single inhaler (known as albuterol-budesonide, AIRSUPRA™). This summary describes the results for people aged 18 yearsand older who took part in the study.


Subject(s)
Albuterol , Asthma , Bronchodilator Agents , Budesonide , Drug Combinations , Nebulizers and Vaporizers , Humans , Asthma/drug therapy , Albuterol/administration & dosage , Administration, Inhalation , Bronchodilator Agents/administration & dosage , Budesonide/administration & dosage , Adult , Middle Aged , Male , Female , Treatment Outcome , Adolescent , Young Adult , Aged , Anti-Asthmatic Agents/administration & dosage
8.
Antioxidants (Basel) ; 13(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38671844

ABSTRACT

Chronic hyperglycemia induces intrarenal oxidative stress due to the excessive production of reactive oxygen species (ROS), leading to a cascade of events that contribute to the development and progression of diabetic kidney disease (DKD). NOX5, a pro-oxidant NADPH oxidase isoform, has been identified as a significant contributor to renal ROS in humans. Elevated levels of renal ROS contribute to endothelial cell dysfunction and associated inflammation, causing increased endothelial permeability, which can disrupt the renal ecosystem, leading to progressive albuminuria and renal fibrosis in DKD. This study specifically examines the contribution of endothelial cell-specific human NOX5 expression in renal pathology in a transgenic mouse model of DKD. This study additionally compares NOX5 with the previously characterized NADPH oxidase, NOX4, in terms of their relative roles in DKD. Regardless of NOX4 pathway, this study found that endothelial cell-specific expression of NOX5 exacerbates renal injury, albuminuria and fibrosis. This is attributed to the activation of the endothelial mesenchymal transition (EMT) pathway via enhanced ROS formation and the modulation of redox-sensitive factors. These findings underscore the potential therapeutic significance of NOX5 inhibition in human DKD. The study proposes that inhibiting NOX5 could be a promising approach for mitigating the progression of DKD and strengthens the case for the development of NOX5-specific inhibitors as a potential therapeutic intervention.

9.
Am J Kidney Dis ; 84(1): 8-17.e1, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38551531

ABSTRACT

RATIONALE & OBJECTIVE: Evidence has demonstrated that albuminuria is a key diagnostic and prognostic marker of diabetic chronic kidney disease, but the impact of its day-to-day variability has not been adequately considered. This study quantified within-individual variability of albuminuria in people with type 2 diabetes to inform clinical albuminuria monitoring. STUDY DESIGN: Descriptive cross-sectional analysis. SETTING & PARTICIPANTS: People with type 2 diabetes (n=826, 67.1 [IQR, 60.3-72.4] years, 64.9% male) participating in the Progression of Diabetic Complications (PREDICT) cohort study. EXPOSURE: Four spot urine collections for measurement of urinary albumin-creatinine ratio (UACR) within 4 weeks. OUTCOME: Variability of UACR. ANALYTICAL APPROACH: We characterized within-individual variability (coefficient of variation [CV], 95% limits of random variation, intraclass correlation coefficient), developed a calculator displaying probabilities that any observed difference between a pair of UACR values truly exceeded a 30% difference, and estimated the ranges of diagnostic uncertainty to inform a need for additional UACR collections to exclude or confirm albuminuria. Multiple linear regression examined factors influencing UACR variability. RESULTS: We observed high within-individual variability (CV 48.8%; 95% limits of random variation showed a repeated UACR to be as high/low as 3.78/0.26 times the first). If a single-collection UACR increased from 2 to 5mg/mmol, the probability that UACR actually increased by at least 30% was only 50%, rising to 97% when 2 collections were obtained at each time point. The ranges of diagnostic uncertainty were 2.0-4.0mg/mmol after an initial UACR test, narrowing to 2.4-3.2 and 2.7-2.9mg/mmol for the mean of 2 and 3 collections, respectively. Some factors correlated with higher (female sex; moderately increased albuminuria) or lower (reduced estimated glomerular filtration rate and sodium-glucose cotransporter 2 inhibitor/angiotensin-converting enzyme inhibitor/angiotensin receptor blocker treatment) within-individual UACR variability. LIMITATIONS: Reliance on the mean of 4 UACR collections as the reference standard for albuminuria. CONCLUSIONS: UACR demonstrates a high degree of within-individual variability among individuals with type 2 diabetes. Multiple urine collections for UACR may improve capacity to monitor changes over time in clinical and research settings but may not be necessary for the diagnosis of albuminuria. PLAIN-LANGUAGE SUMMARY: Albuminuria (albumin in urine) is a diagnostic and prognostic marker of diabetic chronic kidney disease. However, albuminuria can vary within an individual from day to day. We compared 4 random spot urinary albumin-creatinine ratio (UACR) samples from 826 participants. We found that a second UACR collection may be as small as a fourth or as large as almost 4 times the first sample's UACR level. This high degree of variability presents a challenge to our ability to interpret changes in albuminuria. Multiple collections have been suggested as a solution. We have constructed tools that may aid clinicians in deciding how many urine collections are required to monitor and diagnose albuminuria. Multiple urine collections may be required for individual monitoring but not necessarily for diagnosis.


Subject(s)
Albuminuria , Creatinine , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Diabetes Mellitus, Type 2/urine , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Albuminuria/urine , Albuminuria/diagnosis , Female , Male , Cross-Sectional Studies , Middle Aged , Creatinine/urine , Aged , Diabetic Nephropathies/urine , Diabetic Nephropathies/diagnosis , Cohort Studies
10.
Kidney Med ; 6(3): 100783, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38419787

ABSTRACT

Rationale & Objective: Kidney function progressively declines in most patients with type 2 diabetes (T2DM). Many develop progressive chronic kidney disease (CKD), but some experience a more rapid decline, with a greater risk of kidney failure and cardiovascular disease. In EMPA-REG OUTCOME, empagliflozin was associated with slower kidney disease progression. This post hoc analysis evaluated the effect of empagliflozin (pooled doses) on the prevalence of a "rapid decliner" phenotype, defined by an annual estimated glomerular filtration rate (eGFR) decline of >3 mL/min/1.73 m2. Study Design: This was an exploratory analysis of EMPA-REG OUTCOME, a large randomized, double-blind, placebo-controlled trial in adults with T2DM, established cardiovascular disease and an eGFR of ≥30 mL/min/1.73 m2. Setting & Participants: Analysis was undertaken on 6,967 participants (99.2%) in whom serial eGFR data was available. Interventions: Patients were randomized (1:1:1) to empagliflozin 10 mg, 25 mg, or placebo in addition to standard of care. Outcomes: Annual change in eGFR over the maintenance phase of treatment (week 4 to last value on treatment) was calculated using linear regression models. Logistic regression analysis was used to investigate differences in rapid decline between the treatment groups. Results: Over the study period, a rapid decliner phenotype was observed in 188 (9.5%) participants receiving placebo and 134 (3.4%) receiving empagliflozin. After adjusting for other risk factors, this equated to a two-third reduction in odds (OR, 0.32; 95% CI, 0.25-0.40; P < 0.001) among participants receiving empagliflozin versus placebo. A comparable risk reduction was observed using a threshold of eGFR decline of >5 mL/min/1.73 m2/y (empagliflozin vs placebo, 43 [1.1%] vs 44 [2.2%] participants; OR, 0.47; 95% CI, 0.31-0.72; P < 0.001). Limitations: This is a post hoc analysis of a trial undertaken in participants with T2DM and CVD. Generalization of findings to other settings remains to be established. Conclusions: Patients receiving empagliflozin were significantly less likely to experience a rapid decline in eGFR over a median of 2.6 years of exposure to the study drug. Funding: The Boehringer Ingelheim and Eli Lilly and Company Diabetes Alliance. Trial Registration: clinicaltrials.gov ID: NCT01131676.


In most people with type 2 diabetes, their kidney function starts to decline over time. However, in some people, this can happen more rapidly, which can increase their risk of kidney or cardiovascular disease. A major study, EMPA-REG OUTCOME, has shown that empagliflozin, which helps to control blood sugar in people with type 2 diabetes, also reduced the risk of cardiovascular disease events and slowed the progression of kidney disease, when compared with people in the study who received placebo. In this new research from the same major study empagliflozin, compared with a placebo, was shown to reduce the risk of people having a rapid decline in their kidney function over the 3 years of the study.

11.
New Phytol ; 241(6): 2435-2447, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38214462

ABSTRACT

Radiation use efficiency (RUE) is a key crop adaptation trait that quantifies the potential amount of aboveground biomass produced by the crop per unit of solar energy intercepted. But it is unclear why elite maize and grain sorghum hybrids differ in their RUE at the crop level. Here, we used a non-traditional top-down approach via canopy photosynthesis modelling to identify leaf-level photosynthetic traits that are key to differences in crop-level RUE. A novel photosynthetic response measurement was developed and coupled with use of a Bayesian model fitting procedure, incorporating a C4 leaf photosynthesis model, to infer cohesive sets of photosynthetic parameters by simultaneously fitting responses to CO2 , light, and temperature. Statistically significant differences between leaf photosynthetic parameters of elite maize and grain sorghum hybrids were found across a range of leaf temperatures, in particular for effects on the quantum yield of photosynthesis, but also for the maximum enzymatic activity of Rubisco and PEPc. Simulation of diurnal canopy photosynthesis predicted that the leaf-level photosynthetic low-light response and its temperature dependency are key drivers of the performance of crop-level RUE, generating testable hypotheses for further physiological analysis and bioengineering applications.


Subject(s)
Photosynthesis , Sunlight , Temperature , Bayes Theorem , Photosynthesis/physiology , Plant Leaves , Zea mays
12.
JAMA Cardiol ; 9(2): 134-143, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38170502

ABSTRACT

Importance: Previous studies have reported an association between hypoglycemia and cardiovascular (CV) events in people with type 2 diabetes (T2D), but it is unclear if this association is causal or identifies a high-risk patient phenotype. Objective: To evaluate the associations between hypoglycemia and CV outcomes. Design, Setting, and Participants: This secondary analysis was a post hoc assessment of the multinational, double-blind CARMELINA (Cardiovascular and Renal Microvascular Outcome Study With Linagliptin; 2013-2016) and CAROLINA (Cardiovascular Outcome Trial of Linagliptin vs Glimepiride in Type 2 Diabetes; 2010-2018) randomized clinical trials of the antihyperglycemic drug, linagliptin, a dipeptidyl peptidase 4 inhibitor. Participants were adults with T2D at high CV risk with or without high kidney risk. By design, participants in the CARMELINA trial had longer duration of T2D and had a higher CV risk than participants in the CAROLINA trial. Data analyses were conducted between June 2021 and June 2023. Intervention: Linagliptin or placebo in the CARMELINA trial, and linagliptin or glimepiride in the CAROLINA trial. Main Outcomes and Measures: The primary outcome for both trials was CV death, myocardial infarction (MI), or stroke (3-point major adverse CV events [3P-MACE]). For the present analyses, hospitalization for heart failure (HF) was added. Hypoglycemia was defined as plasma glucose less than 54 mg/dL or severe hypoglycemia (episodes requiring the assistance of another person). Associations between the first hypoglycemic episode and subsequent CV events and between nonfatal CV events (MI, stroke, hospitalization for HF) and subsequent hypoglycemic episodes were assessed using multivariable Cox proportional hazards regression models. Sensitivity analyses explored the risk of CV events within 60 days after each hypoglycemic episode. Results: In the CARMELINA trial (6979 patients; 4390 males [62.9%]; mean [SD] age, 65.9 [9.1] years), there was an association between hypoglycemia and subsequent 3P-MACE plus hospitalization for HF (hazard ratio [HR], 1.23; 95% CI, 1.04-1.46) as well as between nonfatal CV events and subsequent hypoglycemia (HR, 1.39; 95% CI, 1.06-1.83). In the CAROLINA trial (6033 patients; 3619 males (60.0%); mean [SD] age, 64.0 [9.5] years), there was no association between hypoglycemia and subsequent 3P-MACE plus hospitalization for HF (HR, 1.00; 95% CI, 0.76-1.32) and between nonfatal CV events and subsequent hypoglycemia (HR, 1.44; 95% CI, 0.96-2.16). In analyses of CV events occurring within 60 days after hypoglycemia, there was either no association or too few events to analyze. Conclusions and Relevance: This study found bidirectional associations between hypoglycemia and CV outcomes in the CARMELINA trial but no associations in either direction in the CAROLINA trial, challenging the notion that hypoglycemia causes adverse CV events. The findings from the CARMELINA trial suggest that both hypoglycemia and CV events more likely identify patients at high risk for both. Trial Registration: ClinicalTrials.gov Identifier: NCT01897532 (CARMELINA) and NCT01243424 (CAROLINA).


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Hypoglycemia , Myocardial Infarction , Stroke , Sulfonylurea Compounds , Male , Humans , Aged , Middle Aged , Linagliptin/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Risk Factors , Randomized Controlled Trials as Topic , Hypoglycemic Agents/therapeutic use , Hypoglycemia/chemically induced , Hypoglycemia/epidemiology , Hypoglycemia/complications , Heart Failure/complications , Myocardial Infarction/drug therapy , Stroke/chemically induced
13.
Kidney Int ; 105(1): 18-20, 2024 01.
Article in English | MEDLINE | ID: mdl-38182288

ABSTRACT

Y-box-binding protein 1 is a well-described and important regulator of gene transcription, which is linked to various pathologic conditions, including inflammation and fibrosis of the kidney. The identification of a novel and protective crosstalk pathway between podocytes and tubular cells in the kidney with Y-box-binding protein 1 acting as a paracrine messenger sheds new light and provides novel opportunities for renoprotection.


Subject(s)
Kidney Diseases , Y-Box-Binding Protein 1 , Humans , Kidney , Epithelial Cells , Inflammation
14.
Kidney Int ; 105(1): 132-149, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38069998

ABSTRACT

Glucagon like peptide-1 (GLP-1) is a hormone produced and released by cells of the gastrointestinal tract following meal ingestion. GLP-1 receptor agonists (GLP-1RA) exhibit kidney-protective actions through poorly understood mechanisms. Here we interrogated whether the receptor for advanced glycation end products (RAGE) plays a role in mediating the actions of GLP-1 on inflammation and diabetic kidney disease. Mice with deletion of the GLP-1 receptor displayed an abnormal kidney phenotype that was accelerated by diabetes and improved with co-deletion of RAGE in vivo. Activation of the GLP-1 receptor pathway with liraglutide, an anti-diabetic treatment, downregulated kidney RAGE, reduced the expansion of bone marrow myeloid progenitors, promoted M2-like macrophage polarization and lessened markers of kidney damage in diabetic mice. Single cell transcriptomics revealed that liraglutide induced distinct transcriptional changes in kidney endothelial, proximal tubular, podocyte and macrophage cells, which were dominated by pathways involved in nutrient transport and utilization, redox sensing and the resolution of inflammation. The kidney-protective action of liraglutide was corroborated in a non-diabetic model of chronic kidney disease, the subtotal nephrectomised rat. Thus, our findings identify a novel glucose-independent kidney-protective action of GLP-1-based therapies in diabetic kidney disease and provide a valuable resource for exploring the cell-specific kidney transcriptional response ensuing from pharmacological GLP-1R agonism.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Rats , Mice , Animals , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Diabetic Nephropathies/etiology , Diabetic Nephropathies/genetics , Liraglutide/pharmacology , Liraglutide/therapeutic use , Glucagon-Like Peptide-1 Receptor/genetics , Diabetes Mellitus, Experimental/metabolism , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/therapeutic use , Inflammation
15.
Curr Opin Nephrol Hypertens ; 33(1): 13-25, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37889557

ABSTRACT

PURPOSE OF REVIEW: The purpose of this review is to summarize the latest evidence on the prevention and progression of diabetic kidney disease (DKD), as well as novel pharmacological interventions from preclinical and early clinical studies with promising findings in the reduction of this condition's burden. RECENT FINDINGS: We will cover the latest evidence on the reduction of proteinuria and kidney function decline in DKD achieved through established renin-angiotensin-aldosterone system (RAAS) system blockade and the more recent addition of SGLT2i, nonsteroidal mineralocorticoid receptor antagonists (MRAs) and GLP1-RA, that combined will most likely integrate the mainstay for current DKD treatment. We also highlight evidence from new mechanisms of action in DKD, including other haemodynamic anti-inflammatory and antifibrotic interventions, oxidative stress modulators and cell identity and epigenetic targets. SUMMARY: Renal specific outcome trials have become more popular and are increasing the available armamentarium to diminish the progression of renal decline in patients at greater risk of end-stage kidney disease (ESKD) such as diabetic individuals. A combined pharmaceutical approach based on available rigorous studies should include RAAS blockade, SGLT2 inhibitors, nonsteroidal MRA and expectedly GLP1-RA on a personalized based-intervention. New specific trials designed to address renal outcomes will be needed for innovative therapies to conclude on their potential benefits in DKD.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Kidney Failure, Chronic , Humans , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Renin-Angiotensin System , Kidney , Kidney Failure, Chronic/drug therapy , Mineralocorticoid Receptor Antagonists/therapeutic use , Diabetes Mellitus/drug therapy
17.
Presse Med ; 52(1): 104178, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37783423

ABSTRACT

Major clinical advances over the last 20 years in the area of diabetic kidney disease (DKD) have been confirmed in large seminal clinical trials. These findings add to the previously identified benefits resulting from intensive glucose and blood pressure control therapies. Furthermore, newer glucose lowering treatments such as SGLT2 inhibitors and GLP-1 agonists appear very promising and are likely to transform the management and outlook of DKD over the next decade. In addition, novel mineralocorticoid receptor antagonists and a recently reported trial with an endothelin receptor blocker also have the potential to change clinical practice.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Sodium-Glucose Transporter 2 Inhibitors , Humans , Diabetic Nephropathies/drug therapy , Kidney , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Glucose , Diabetes Mellitus, Type 2/drug therapy
18.
Org Biomol Chem ; 21(41): 8344-8352, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37800999

ABSTRACT

Small molecule heterobifunctional degraders (commonly also known as PROTACs) offer tremendous potential to deliver new therapeutics in areas of unmet medical need. To deliver on this promise, a new discipline directed at degrader design and optimization has emerged within medicinal chemistry to address a central challenge, namely how to optimize relatively large, heterobifunctional molecules for activity, whilst maintaining drug-like properties. This process involves simultaneous optimization of the three principle degrader components: E3 ubiquitin ligase ligand, linker, and protein of interest (POI) ligand. A substantial degree of commonality exists with the E3 ligase ligands typically used at the early stages of degrader development, resulting in demand for these compounds as chemical building blocks in degrader research programs. We describe herein a collation of large scale, high-yielding syntheses to access the most utilized E3 ligase ligands to support early-stage degrader development.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Proteolysis , Ligands , Proteins/metabolism
20.
Diabetes Res Clin Pract ; 204: 110918, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37748713

ABSTRACT

AIMS: To investigate epigenomic indices of diabetic kidney disease (DKD) susceptibility among high-risk populations with type 2 diabetes mellitus. METHODS: KDIGO (Kidney Disease: Improving Global Outcomes) clinical guidelines were used to classify people living with or without DKD. Differential gene methylation of DKD was then assessed in a discovery Aboriginal Diabetes Study cohort (PROPHECY, 89 people) and an external independent study from Thailand (THEPTARIN, 128 people). Corresponding mRNA levels were also measured and linked to levels of albuminuria and eGFR. RESULTS: Increased DKD risk was associated with reduced methylation and elevated gene expression in the PROPHECY discovery cohort of Aboriginal Australians and these findings were externally validated in the THEPTARIN diabetes registry of Thai people living with type 2 diabetes mellitus. CONCLUSIONS: Novel epigenomic scores can improve diagnostic performance over clinical modelling using albuminuria and GFR alone and can distinguish DKD susceptibility.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Diabetes Mellitus, Type 2/complications , Albuminuria/complications , Disease Susceptibility/complications , Epigenomics , Australia , Kidney , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Biomarkers , Glomerular Filtration Rate
SELECTION OF CITATIONS
SEARCH DETAIL