Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 1455, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36927839

ABSTRACT

Identifying how small molecules act to kill malaria parasites can lead to new "chemically validated" targets. By pressuring Plasmodium falciparum asexual blood stage parasites with three novel structurally-unrelated antimalarial compounds (MMV665924, MMV019719 and MMV897615), and performing whole-genome sequence analysis on resistant parasite lines, we identify multiple mutations in the P. falciparum acyl-CoA synthetase (ACS) genes PfACS10 (PF3D7_0525100, M300I, A268D/V, F427L) and PfACS11 (PF3D7_1238800, F387V, D648Y, and E668K). Allelic replacement and thermal proteome profiling validates PfACS10 as a target of these compounds. We demonstrate that this protein is essential for parasite growth by conditional knockdown and observe increased compound susceptibility upon reduced expression. Inhibition of PfACS10 leads to a reduction in triacylglycerols and a buildup of its lipid precursors, providing key insights into its function. Analysis of the PfACS11 gene and its mutations point to a role in mediating resistance via decreased protein stability.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Plasmodium falciparum/metabolism , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Mutation , Ligases/metabolism
2.
Commun Biol ; 3(1): 701, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33219324

ABSTRACT

Mitosis has been validated by numerous anti-cancer drugs as being a druggable process, and selective inhibition of parasite proliferation provides an obvious opportunity for therapeutic intervention against malaria. Mitosis is controlled through the interplay between several protein kinases and phosphatases. We show here that inhibitors of human mitotic kinases belonging to the Aurora family inhibit P. falciparum proliferation in vitro with various potencies, and that a genetic selection for mutant parasites resistant to one of the drugs, Hesperadin, identifies a resistance mechanism mediated by a member of a different kinase family, PfNek1 (PF3D7_1228300). Intriguingly, loss of PfNek1 catalytic activity provides protection against drug action. This points to an undescribed functional interaction between Ark and Nek kinases and shows that existing inhibitors can be used to validate additional essential and druggable kinase functions in the parasite.


Subject(s)
Aurora Kinases , Epistasis, Genetic , Indoles/pharmacology , NIMA-Related Kinase 1 , Plasmodium falciparum , Sulfonamides/pharmacology , Aurora Kinases/antagonists & inhibitors , Aurora Kinases/chemistry , Aurora Kinases/metabolism , Epistasis, Genetic/drug effects , Epistasis, Genetic/genetics , Humans , NIMA-Related Kinase 1/chemistry , NIMA-Related Kinase 1/genetics , NIMA-Related Kinase 1/metabolism , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism
3.
Science ; 359(6372): 191-199, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29326268

ABSTRACT

Chemogenetic characterization through in vitro evolution combined with whole-genome analysis can identify antimalarial drug targets and drug-resistance genes. We performed a genome analysis of 262 Plasmodium falciparum parasites resistant to 37 diverse compounds. We found 159 gene amplifications and 148 nonsynonymous changes in 83 genes associated with drug-resistance acquisition, where gene amplifications contributed to one-third of resistance acquisition events. Beyond confirming previously identified multidrug-resistance mechanisms, we discovered hitherto unrecognized drug target-inhibitor pairs, including thymidylate synthase and a benzoquinazolinone, farnesyltransferase and a pyrimidinedione, and a dipeptidylpeptidase and an arylurea. This exploration of the P. falciparum resistome and druggable genome will likely guide drug discovery and structural biology efforts, while also advancing our understanding of resistance mechanisms available to the malaria parasite.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Genome, Protozoan , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Activation, Metabolic , Alleles , DNA Copy Number Variations , Directed Molecular Evolution , Drug Resistance, Multiple/genetics , Genes, Protozoan , Metabolomics , Mutation , Plasmodium falciparum/growth & development , Selection, Genetic , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Nat Microbiol ; 2(10): 1403-1414, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28808258

ABSTRACT

Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.


Subject(s)
Antimalarials/pharmacology , Malaria, Falciparum/drug therapy , Malaria/drug therapy , Plasmodium berghei/drug effects , Quinolines/pharmacology , Amino Acid Sequence , Animals , Anopheles , CRISPR-Cas Systems/genetics , DNA, Protozoan/genetics , DNA, Protozoan/metabolism , Drug Combinations , Drug Resistance , Endocytosis/drug effects , Ethanolamines/pharmacology , Fluorenes/pharmacology , Gene Editing , HEK293 Cells , Heme , Hemoglobins/drug effects , High-Throughput Screening Assays , Humans , Lumefantrine , Malaria/transmission , Malaria, Falciparum/blood , Malaria, Falciparum/transmission , Male , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Multidrug Resistance-Associated Proteins/drug effects , Multidrug Resistance-Associated Proteins/genetics , Mutation , Oocysts/drug effects , Plasmodium berghei/pathogenicity , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Quinolines/chemistry
5.
Nat Commun ; 8: 14240, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28106035

ABSTRACT

Pepstatin is a potent peptidyl inhibitor of various malarial aspartic proteases, and also has parasiticidal activity. Activity of pepstatin against cultured Plasmodium falciparum is highly variable depending on the commercial source. Here we identify a minor contaminant (pepstatin butyl ester) as the active anti-parasitic principle. We synthesize a series of derivatives and characterize an analogue (pepstatin hexyl ester) with low nanomolar activity. By selecting resistant parasite mutants, we find that a parasite esterase, PfPARE (P. falciparum Prodrug Activation and Resistance Esterase) is required for activation of esterified pepstatin. Parasites with esterase mutations are resistant to pepstatin esters and to an open source antimalarial compound, MMV011438. Recombinant PfPARE hydrolyses pepstatin esters and de-esterifies MMV011438. We conclude that (1) pepstatin is a potent but poorly bioavailable antimalarial; (2) PfPARE is a functional esterase that is capable of activating prodrugs; (3) Mutations in PfPARE constitute a mechanism of antimalarial resistance.


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Esterases/genetics , Mutation , Pepstatins/pharmacology , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology , Protozoan Proteins/genetics , Esterases/antagonists & inhibitors , Esterases/metabolism , Plasmodium falciparum/genetics , Prodrugs/pharmacology , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism
6.
ACS Infect Dis ; 2(11): 816-826, 2016 11 11.
Article in English | MEDLINE | ID: mdl-27933786

ABSTRACT

MMV007564 is a novel antimalarial benzimidazolyl piperidine chemotype identified in cellular screens. To identify the genetic determinant of MMV007564 resistance, parasites were cultured in the presence of the compound to generate resistant lines. Whole genome sequencing revealed distinct mutations in the gene named Plasmodium falciparum cyclic amine resistance locus (pfcarl), encoding a conserved protein of unknown function. Mutations in pfcarl are strongly associated with resistance to a structurally unrelated class of compounds, the imidazolopiperazines, including KAF156, currently in clinical trials. Our data demonstrate that pfcarl mutations confer resistance to two distinct compound classes, benzimidazolyl piperidines and imidazolopiperazines. However, MMV007564 and the imidazolopiperazines, KAF156 and GNF179, have different timings of action in the asexual blood stage and different potencies against the liver and sexual blood stages. These data suggest that pfcarl is a multidrug-resistance gene rather than a common target for benzimidazolyl piperidines and imidazolopiperazines.


Subject(s)
Antimalarials/pharmacology , Drug Resistance , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Antimalarials/chemistry , Humans , Life Cycle Stages , Malaria, Falciparum/drug therapy , Mutation , Piperidines/chemistry , Piperidines/pharmacology , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Protozoan Proteins/metabolism
7.
Nat Microbiol ; 1: 16166, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27642791

ABSTRACT

A molecular understanding of drug resistance mechanisms enables surveillance of the effectiveness of new antimicrobial therapies during development and deployment in the field. We used conventional drug resistance selection as well as a regime of limiting dilution at early stages of drug treatment to probe two antimalarial imidazolopiperazines, KAF156 and GNF179. The latter approach permits the isolation of low-fitness mutants that might otherwise be out-competed during selection. Whole-genome sequencing of 24 independently derived resistant Plasmodium falciparum clones revealed four parasites with mutations in the known cyclic amine resistance locus (pfcarl) and a further 20 with mutations in two previously unreported P. falciparum drug resistance genes, an acetyl-CoA transporter (pfact) and a UDP-galactose transporter (pfugt). Mutations were validated both in vitro by CRISPR editing in P. falciparum and in vivo by evolution of resistant Plasmodium berghei mutants. Both PfACT and PfUGT were localized to the endoplasmic reticulum by fluorescence microscopy. As mutations in pfact and pfugt conveyed resistance against additional unrelated chemical scaffolds, these genes are probably involved in broad mechanisms of antimalarial drug resistance.

8.
Nature ; 538(7625): 344-349, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27602946

ABSTRACT

Antimalarial drugs have thus far been chiefly derived from two sources-natural products and synthetic drug-like compounds. Here we investigate whether antimalarial agents with novel mechanisms of action could be discovered using a diverse collection of synthetic compounds that have three-dimensional features reminiscent of natural products and are underrepresented in typical screening collections. We report the identification of such compounds with both previously reported and undescribed mechanisms of action, including a series of bicyclic azetidines that inhibit a new antimalarial target, phenylalanyl-tRNA synthetase. These molecules are curative in mice at a single, low dose and show activity against all parasite life stages in multiple in vivo efficacy models. Our findings identify bicyclic azetidines with the potential to both cure and prevent transmission of the disease as well as protect at-risk populations with a single oral dose, highlighting the strength of diversity-oriented synthesis in revealing promising therapeutic targets.


Subject(s)
Antimalarials/chemical synthesis , Antimalarials/pharmacology , Azetidines/therapeutic use , Drug Discovery , Life Cycle Stages/drug effects , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Plasmodium falciparum/growth & development , Animals , Antimalarials/administration & dosage , Antimalarials/therapeutic use , Azabicyclo Compounds/administration & dosage , Azabicyclo Compounds/chemical synthesis , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Azetidines/administration & dosage , Azetidines/adverse effects , Azetidines/pharmacology , Cytosol/enzymology , Disease Models, Animal , Female , Liver/drug effects , Liver/parasitology , Macaca mulatta/parasitology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/transmission , Male , Mice , Phenylalanine-tRNA Ligase/antagonists & inhibitors , Phenylurea Compounds/administration & dosage , Phenylurea Compounds/chemical synthesis , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Plasmodium falciparum/cytology , Plasmodium falciparum/enzymology , Safety
9.
mBio ; 7(4)2016 07 05.
Article in English | MEDLINE | ID: mdl-27381290

ABSTRACT

UNLABELLED: Mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) are associated with parasite resistance to the imidazolopiperazines, a potent class of novel antimalarial compounds that display both prophylactic and transmission-blocking activity, in addition to activity against blood-stage parasites. Here, we show that pfcarl encodes a protein, with a predicted molecular weight of 153 kDa, that localizes to the cis-Golgi apparatus of the parasite in both asexual and sexual blood stages. Utilizing clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene introduction of 5 variants (L830V, S1076N/I, V1103L, and I1139K), we demonstrate that mutations in pfcarl are sufficient to generate resistance against the imidazolopiperazines in both asexual and sexual blood-stage parasites. We further determined that the mutant PfCARL protein confers resistance to several structurally unrelated compounds. These data suggest that PfCARL modulates the levels of small-molecule inhibitors that affect Golgi-related processes, such as protein sorting or membrane trafficking, and is therefore an important mechanism of resistance in malaria parasites. IMPORTANCE: Several previous in vitro evolution studies have implicated the Plasmodium falciparum cyclic amine resistance locus (PfCARL) as a potential target of imidazolopiperazines, potent antimalarial compounds with broad activity against different parasite life cycle stages. Given that the imidazolopiperazines are currently being tested in clinical trials, understanding their mechanism of resistance and the cellular processes involved will allow more effective clinical usage.


Subject(s)
Antimalarials/pharmacology , Drug Resistance, Multiple , Genetic Loci , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Recombination, Genetic
10.
Nat Commun ; 7: 11901, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27301419

ABSTRACT

Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance.


Subject(s)
Drug Resistance , Parasites/physiology , Plasmodium falciparum/physiology , Animals , Antimalarials/pharmacology , Clone Cells , Drug Resistance/drug effects , INDEL Mutation/genetics , Mutation/genetics , Parasites/drug effects , Plasmodium falciparum/drug effects , Polymorphism, Single Nucleotide/genetics
11.
ACS Infect Dis ; 2(4): 281-293, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-27275010

ABSTRACT

In order to identify the most attractive starting points for drugs that can be used to prevent malaria, a diverse chemical space comprising tens of thousands to millions of small molecules may need to be examined. Achieving this throughput necessitates the development of efficient ultra-high-throughput screening methods. Here, we report the development and evaluation of a luciferase-based phenotypic screen of malaria exoerythrocytic-stage parasites optimized for a 1536-well format. This assay uses the exoerythrocytic stage of the rodent malaria parasite, Plasmodium berghei, and a human hepatoma cell line. We use this assay to evaluate several biased and unbiased compound libraries, including two small sets of molecules (400 and 89 compounds, respectively) with known activity against malaria erythrocytic-stage parasites and a set of 9886 diversity-oriented synthesis (DOS)-derived compounds. Of the compounds screened, we obtain hit rates of 12-13 and 0.6% in preselected and naïve libraries, respectively, and identify 52 compounds with exoerythrocytic-stage activity less than 1 µM and having minimal host cell toxicity. Our data demonstrate the ability of this method to identify compounds known to have causal prophylactic activity in both human and animal models of malaria, as well as novel compounds, including some exclusively active against parasite exoerythrocytic stages.

12.
Mol Microbiol ; 101(3): 381-93, 2016 08.
Article in English | MEDLINE | ID: mdl-27073104

ABSTRACT

Emerging resistance to first-line antimalarial combination therapies threatens malaria treatment and the global elimination campaign. Improved therapeutic strategies are required to protect existing drugs and enhance treatment efficacy. We report that the piperazine-containing compound ACT-451840 exhibits single-digit nanomolar inhibition of the Plasmodium falciparum asexual blood stages and transmissible gametocyte forms. Genome sequence analyses of in vitro-derived ACT-451840-resistant parasites revealed single nucleotide polymorphisms in pfmdr1, which encodes a digestive vacuole membrane-bound ATP-binding cassette transporter known to alter P. falciparum susceptibility to multiple first-line antimalarials. CRISPR-Cas9 based gene editing confirmed that PfMDR1 point mutations mediated ACT-451840 resistance. Resistant parasites demonstrated increased susceptibility to the clinical drugs lumefantrine, mefloquine, quinine and amodiaquine. Stage V gametocytes harboring Cas9-introduced pfmdr1 mutations also acquired ACT-451840 resistance. These findings reveal that PfMDR1 mutations can impart resistance to compounds active against asexual blood stages and mature gametocytes. Exploiting PfMDR1 resistance mechanisms provides new opportunities for developing disease-relieving and transmission-blocking antimalarials.


Subject(s)
Acrylamides/pharmacology , Antimalarials/pharmacology , Artemisinins/pharmacology , Clustered Regularly Interspaced Short Palindromic Repeats , Multidrug Resistance-Associated Proteins/metabolism , Piperazines/pharmacology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , DNA, Protozoan/genetics , DNA, Protozoan/metabolism , Drug Resistance , Drug Synergism , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Multidrug Resistance-Associated Proteins/genetics , Plasmodium falciparum/metabolism , Point Mutation , Polymorphism, Single Nucleotide
13.
Am J Trop Med Hyg ; 94(2): 302-313, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26711524

ABSTRACT

Leptospirosis is the most common zoonotic disease worldwide with an estimated 500,000 severe cases reported annually, and case fatality rates of 12-25%, due primarily to acute kidney and lung injuries. Despite its prevalence, the molecular mechanisms underlying leptospirosis pathogenesis remain poorly understood. To identify virulence-related genes in Leptospira interrogans, we delineated cumulative genome changes that occurred during serial in vitro passage of a highly virulent strain of L. interrogans serovar Lai into a nearly avirulent isogenic derivative. Comparison of protein coding and computationally predicted noncoding RNA (ncRNA) genes between these two polyclonal strains identified 15 nonsynonymous single nucleotide variant (nsSNV) alleles that increased in frequency and 19 that decreased, whereas no changes in allelic frequency were observed among the ncRNA genes. Some of the nsSNV alleles were in six genes shown previously to be transcriptionally upregulated during exposure to in vivo-like conditions. Five of these nsSNVs were in evolutionarily conserved positions in genes related to signal transduction and metabolism. Frequency changes of minor nsSNV alleles identified in this study likely contributed to the loss of virulence during serial in vitro culture. The identification of new virulence-associated genes should spur additional experimental inquiry into their potential role in Leptospira pathogenesis.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Leptospira/metabolism , Alleles , Bacterial Proteins/genetics , Bacteriological Techniques , Genome, Bacterial , Leptospira/genetics , Leptospira/pathogenicity , Virulence
14.
ACS Infect Dis ; 1(8): 367-79, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26719854

ABSTRACT

Understanding the mechanisms of drug resistance in Plasmodium vivax, the parasite that causes the most widespread form of human malaria, is complicated by the lack of a suitable long-term cell culture system for this parasite. In contrast to P. falciparum, which can be more readily manipulated in the laboratory, insights about parasite biology need to be inferred from human studies. Here we analyze the genomes of parasites within 10 human P. vivax infections from the Peruvian Amazon. Using next-generation sequencing we show that some P. vivax infections analyzed from the region are likely polyclonal. Despite their polyclonality we observe limited parasite genetic diversity by showing that three or fewer haplotypes comprise 94% of the examined genomes, suggesting the recent introduction of parasites into this geographic region. In contrast we find more than three haplotypes in putative drug-resistance genes, including the gene encoding dihydrofolate reductase-thymidylate synthase and the P. vivax multidrug resistance associated transporter, suggesting that resistance mutations have arisen independently. Additionally, several drug-resistance genes are located in genomic regions with evidence of increased copy number. Our data suggest that whole genome sequencing of malaria parasites from patients may provide more insight about the evolution of drug resistance than genetic linkage or association studies, especially in geographical regions with limited parasite genetic diversity.

15.
BMC Bioinformatics ; 15: 63, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24589256

ABSTRACT

BACKGROUND: Whole-genome sequencing represents a powerful experimental tool for pathogen research. We present methods for the analysis of small eukaryotic genomes, including a streamlined system (called Platypus) for finding single nucleotide and copy number variants as well as recombination events. RESULTS: We have validated our pipeline using four sets of Plasmodium falciparum drug resistant data containing 26 clones from 3D7 and Dd2 background strains, identifying an average of 11 single nucleotide variants per clone. We also identify 8 copy number variants with contributions to resistance, and report for the first time that all analyzed amplification events are in tandem. CONCLUSIONS: The Platypus pipeline provides malaria researchers with a powerful tool to analyze short read sequencing data. It provides an accurate way to detect SNVs using known software packages, and a novel methodology for detection of CNVs, though it does not currently support detection of small indels. We have validated that the pipeline detects known SNVs in a variety of samples while filtering out spurious data. We bundle the methods into a freely available package.


Subject(s)
DNA Copy Number Variations/genetics , Genome, Protozoan/genetics , Genomics/methods , Plasmodium falciparum/genetics , Software , Antimalarials/pharmacology , DNA, Protozoan/genetics , Drug Resistance/genetics , Plasmodium falciparum/drug effects , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...