Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 15(1): 4053, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744848

ABSTRACT

The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.


Subject(s)
Callithrix , Hippocampus , Spatial Navigation , Animals , Callithrix/physiology , Spatial Navigation/physiology , Hippocampus/physiology , Male , Locomotion/physiology , Vision, Ocular/physiology , Pyramidal Cells/physiology , Head Movements/physiology , Interneurons/physiology , Female , Behavior, Animal/physiology , CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/cytology
2.
Hippocampus ; 33(5): 573-585, 2023 05.
Article in English | MEDLINE | ID: mdl-37002559

ABSTRACT

Cells selectively activated by a particular view of an environment have been found in the primate hippocampus (HPC). Whether view cells are present in other brain areas, and how view selectivity interacts with other variables such as object features and place remain unclear. Here, we explore these issues by recording the responses of neurons in the HPC and the lateral prefrontal cortex (LPFC) of rhesus macaques performing a task in which they learn new context-object associations while navigating a virtual environment using a joystick. We measured neuronal responses at different locations in a virtual maze where animals freely directed gaze to different regions of the visual scenes. We show that specific views containing task relevant objects selectively activated a proportion of HPC units, and an even higher proportion of LPFC units. Place selectivity was scarce and generally dependent on view. Many view cells were not affected by changing the object color or the context cue, two task relevant features. However, a small proportion of view cells showed selectivity for these two features. Our results show that during navigation in a virtual environment with complex and dynamic visual stimuli, view cells are found in both the HPC and the LPFC. View cells may have developed as a multiarea specialization in diurnal primates to encode the complexities and layouts of the environment through gaze exploration which ultimately enables building cognitive maps of space that guide navigation.


Subject(s)
Hippocampus , Neurons , Animals , Macaca mulatta , Neurons/physiology , Hippocampus/physiology , Prefrontal Cortex/physiology , Learning
3.
Neuron ; 110(13): 2155-2169.e4, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35561675

ABSTRACT

The hippocampus (HPC) and the lateral prefrontal cortex (LPFC) are two cortical areas of the primate brain deemed essential to cognition. Here, we hypothesized that the codes mediating neuronal communication in the HPC and LPFC microcircuits have distinctively evolved to serve plasticity and memory function at different spatiotemporal scales. We used a virtual reality task in which animals selected one of the two targets in the arms of the maze, according to a learned context-color rule. Our results show that during associative learning, HPC principal cells concentrate spikes in bursts, enabling temporal summation and fast synaptic plasticity in small populations of neurons and ultimately facilitating rapid encoding of associative memories. On the other hand, layer II/III LPFC pyramidal cells fire spikes more sparsely distributed over time. The latter would facilitate broadcasting of signals loaded in short-term memory across neuronal populations without necessarily triggering fast synaptic plasticity.


Subject(s)
Hippocampus , Prefrontal Cortex , Animals , Hippocampus/physiology , Memory, Short-Term/physiology , Prefrontal Cortex/physiology , Primates , Pyramidal Cells/physiology
4.
Hippocampus ; 30(3): 192-209, 2020 03.
Article in English | MEDLINE | ID: mdl-31339193

ABSTRACT

Primates use saccades to gather information about objects and their relative spatial arrangement, a process essential for visual perception and memory. It has been proposed that signals linked to saccades reset the phase of local field potential (LFP) oscillations in the hippocampus, providing a temporal window for visual signals to activate neurons in this region and influence memory formation. We investigated this issue by measuring hippocampal LFPs and spikes in two macaques performing different tasks with unconstrained eye movements. We found that LFP phase clustering (PC) in the alpha/beta (8-16 Hz) frequencies followed foveation onsets, while PC in frequencies lower than 8 Hz followed spontaneous saccades, even on a homogeneous background. Saccades to a solid grey background were not followed by increases in local neuronal firing, whereas saccades toward appearing visual stimuli were. Finally, saccade parameters correlated with LFPs phase and amplitude: saccade direction correlated with delta (≤4 Hz) phase, and saccade amplitude with theta (4-8 Hz) power. Our results suggest that signals linked to saccades reach the hippocampus, producing synchronization of delta/theta LFPs without a general activation of local neurons. Moreover, some visual inputs co-occurring with saccades produce LFP synchronization in the alpha/beta bands and elevated neuronal firing. Our findings support the hypothesis that saccade-related signals enact sensory input-dependent plasticity and therefore memory formation in the primate hippocampus.


Subject(s)
Hippocampus/physiology , Membrane Potentials/physiology , Neurons/physiology , Saccades/physiology , Visual Perception/physiology , Action Potentials/physiology , Animals , Macaca mulatta , Male
5.
Nat Neurosci ; 23(1): 103-112, 2020 01.
Article in English | MEDLINE | ID: mdl-31873285

ABSTRACT

The hippocampus is implicated in associative memory and spatial navigation. To investigate how these functions are mixed in the hippocampus, we recorded from single hippocampal neurons in macaque monkeys navigating a virtual maze during a foraging task and a context-object associative memory task. During both tasks, single neurons encoded information about spatial position; a linear classifier also decoded position. However, the population code for space did not generalize across tasks, particularly where stimuli relevant to the associative memory task appeared. Single-neuron and population-level analyses revealed that cross-task changes were due to selectivity for nonspatial features of the associative memory task when they were visually available (perceptual coding) and following their disappearance (mnemonic coding). Our results show that neurons in the primate hippocampus nonlinearly mix information about space and nonspatial elements of the environment in a task-dependent manner; this efficient code flexibly represents unique perceptual experiences and correspondent memories.


Subject(s)
Hippocampus/physiology , Memory/physiology , Neurons/physiology , Spatial Navigation/physiology , Animals , Macaca mulatta , Male , Space Perception/physiology
6.
J Vis ; 17(12): 15, 2017 10 01.
Article in English | MEDLINE | ID: mdl-29071352

ABSTRACT

Virtual environments (VE) allow testing complex behaviors in naturalistic settings by combining highly controlled visual stimuli with spatial navigation and other cognitive tasks. They also allow for the recording of eye movements using high-precision eye tracking techniques, which is important in electrophysiological studies examining the response properties of neurons in visual areas of nonhuman primates. However, during virtual navigation, the pattern of retinal stimulation can be highly dynamic which may influence eye movements. Here we examine whether and how eye movement patterns change as a function of dynamic visual stimulation during virtual navigation tasks, relative to standard oculomotor tasks. We trained two rhesus macaques to use a joystick to navigate in a VE to complete two tasks. To contrast VE behavior with classic measurements, the monkeys also performed a simple Cued Saccade task. We used a robust algorithm for rapid classification of saccades, fixations, and smooth pursuits. We then analyzed the kinematics of saccades during all tasks, and specifically during different phases of the VE tasks. We found that fixation to smooth pursuit ratios were smaller in VE tasks (4:5) compared to the Cued Saccade task (7:1), reflecting a more intensive use of smooth pursuit to foveate targets in VE than in a standard visually guided saccade task or during spontaneous fixations. Saccades made to rewarded targets (exploitation) tended to have increased peak velocities compared to saccades made to unrewarded objects (exploration). VE exploitation saccades were 6% slower than saccades to discrete targets in the Cued Saccade task. Virtual environments represent a technological advance in experimental design for nonhuman primates. Here we provide a framework to study the ways that eye movements change between and within static and dynamic displays.


Subject(s)
Eye Movements/physiology , Macaca mulatta/physiology , Animals , Biomechanical Phenomena , Cues , Feeding Behavior/physiology , Learning/physiology , Male , Photic Stimulation/methods , Pursuit, Smooth/physiology , Saccades/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...