Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Opin Drug Deliv ; 19(12): 1696-1709, 2022 12.
Article in English | MEDLINE | ID: mdl-36372064

ABSTRACT

OBJECTIVES: Cyclodextrins (CDs) play a pivotal role in the controlled release of drugs; however, their ability to gradually release drugs is here interrogated: can cyclodextrins, even those that form strong inclusion complexes, sustain a prolonged release of drugs? METHODS: An original chromatographic approach was developed and accordingly we classified and determined drugs that form the most stable inclusion complexes with cyclodextrins. ß-CD and hydroxypropyl-ß-CD (HP-ß-CD) were coupled to pullulan (Pul) microspheres and packed into a chromatographic column. Then, different drugs or model compounds were eluted, and values of the retention time (RT) were determined. In vitro release studies were performed for drugs that form the most stable inclusion complexes. RESULTS: The drugs with the longest RT value form the most stable inclusion complexes with Pul/ß-CD and Pul/HP-ß-CD microspheres. Pul/ß-CD microspheres form more stable inclusion complexes than Pul/HP-ß-CD microspheres. However, in spite of their high stability, they were not able to gradually release the included drug (15 min release time). The cross-chromatographic experiments confirmed the hypothesis that in aqueous solution, drug/cyclodextrin complexes are continuously associated and dissociated. CONCLUSIONS: If the dissociation of the guest molecule is very rapid, why is it expected that these complexes gradually release the drug?


Subject(s)
Cyclodextrins , beta-Cyclodextrins , Cyclodextrins/chemistry , 2-Hydroxypropyl-beta-cyclodextrin , beta-Cyclodextrins/chemistry , Pharmaceutical Preparations , Drug Delivery Systems , Solubility
2.
Pharmaceutics ; 14(4)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35456699

ABSTRACT

The cellular internalization of drug carriers occurs via different endocytic pathways that ultimately involve the endosomes and the lysosomes, organelles where the pH value drops to 6.0 and 5.0, respectively. We aimed to design and characterize pH/temperature-responsive carriers for the effective delivery of the anti-tumoral drug doxorubicin. To this purpose, poly(N-isopropylacrylamide-co-vinylimidazole) was synthesized as an attractive pH/temperature-sensitive copolymer. Microspheres made of this copolymer, loaded with doxorubicin (MS-DXR), disintegrate in monodisperse nanospheres (NS-DXR) under conditions similar to that found in the bloodstream (pH = 7.4, temperature of 36 °C) releasing a small amount of payload. However, in environments that simulate the endosomal and lysosomal conditions, nanospheres solubilize, releasing the entire amount of drug. We followed the NS-DXR internalization using two cancer cell lines, hepatic carcinoma HepG2 cells and lung adenocarcinoma A549 cells. The data showed that NS-DXR are internalized to a greater extent by HepG2 cells than A549 cells, and this correlated with increased cytotoxicity induced by NS-DXR in HepG2 cells compared with A549 cells. Moreover, NS-DXR particles do not cause hemolysis and erythrocytes aggregation. Administered in vivo, NS-DXR localized in the liver and kidneys of mice, and the loading of DXR into NS resulted in the reduced renal clearance of DXR. In conclusion, the newly developed poly(N-isopropylacrylamide-co-vinyl imidazole) particles are biocompatible and may be introduced as carriers for doxorubicin to hepatic tumors.

3.
Polymers (Basel) ; 13(18)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34577926

ABSTRACT

A thermosensitive copolymer composed of amphiphilic triblock copolymer, poloxamer 407, grafted on hydrophilic pullulan with pendant carboxymethyl groups (CMP) was prepared and characterized. The structure of the new copolymer was assessed by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance (1H NMR) spectroscopy. The content of the poloxamer in the grafted copolymer was 83.8% (w/w). The effect of the copolymer concentration on the gelation behavior was analyzed by the vertical method and rheological tests; the gel phase of the copolymer occurred at a lower concentration (11%, w/v) as compared with poloxamer (18%, w/v). The starting gelation time under the simulated physiological conditions (phosphate buffer with a pH of 7.4, at 37 °C) was sensitive on the rest temperature before the test, this being 990 s and 280 s after 24 h rest at 4 °C and 20 °C, respectively. The rheological tests evidenced a high elasticity and excellent ability of the copolymer to recover the initial structure after the removal of the applied force or external stimuli. Moreover, the hydrogel has proved a sustained release of amoxicillin (taken as a model drug) over 168 h. Taken together, the results clearly indicate that this copolymer can be used as an injectable hydrogel.

SELECTION OF CITATIONS
SEARCH DETAIL