Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 15945, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31685896

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that function in RNA silencing and post-transcriptional regulation of gene expression in most organisms. The water flea, Daphnia magna is a key model to study phenotypic, physiological and genomic responses to environmental cues and miRNAs can potentially mediate these responses. By using deep sequencing, genome mapping and manual curations, we have characterised the miRNAome of D. magna. We identified 66 conserved miRNAs and 13 novel miRNAs; all of these were found in the three studied life stages of D. magna (juveniles, subadults, adults), but with variation in expression levels between stages. Forty-one of the miRNAs were clustered into 13 genome clusters also present in the D. pulex genome. Most miRNAs contained sequence variants (isomiRs). The highest expressed isomiRs were 3' template variants with one nucleotide deletion or 3' non-template variants with addition of A or U at the 3' end. We also identified offset RNAs (moRs) and loop RNAs (loRs). Our work extends the base for further work on all species (miRNA, isomiRs, moRNAs, loRNAs) of the miRNAome of Daphnia as biomarkers in response to chemical substances and environment cues, and underline age dependency.


Subject(s)
Chromosome Mapping , Daphnia/genetics , Genome , Genomics , High-Throughput Nucleotide Sequencing , MicroRNAs/genetics , Animals , Computational Biology/methods , Gene Expression Profiling , Genomics/methods , MicroRNAs/chemistry , Nucleic Acid Conformation , Sequence Analysis, RNA , Transcriptome
2.
Int J Mol Sci ; 19(7)2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29949882

ABSTRACT

Merkel cell carcinoma (MCC) is a rare and aggressive type of skin cancer associated with a poor prognosis. This carcinoma was named after its presumed cell of origin, the Merkel cell, which is a mechanoreceptor cell located in the basal epidermal layer of the skin. Merkel cell polyomavirus seems to be the major causal factor for MCC because approximately 80% of all MCCs are positive for viral DNAs. UV exposure is the predominant etiological factor for virus-negative MCCs. Intracellular microRNA analysis between virus-positive and virus-negative MCC cell lines and tumor samples have identified differentially expressed microRNAs. Comparative microRNA profiling has also been performed between MCCs and other non-MCC tumors, but not between normal Merkel cells and malignant Merkel cells. Finally, Merkel cell polyomavirus encodes one microRNA, but its expression in virus-positive MCCs is low, or non-detectable or absent, jeopardizing its biological relevance in tumorigenesis. Here, we review the results of microRNA studies in MCCs and discuss the potential application of microRNAs as biomarkers for the diagnosis, progression and prognosis, and treatment of MCC.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Merkel Cell/genetics , MicroRNAs/genetics , Animals , Biomarkers, Tumor/metabolism , Humans , MicroRNAs/metabolism , MicroRNAs/therapeutic use , Models, Biological
3.
BMC Res Notes ; 11(1): 397, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29921324

ABSTRACT

OBJECTIVE: The objective of this study was to analyse intraspecific sequence variation of Atlantic cod mitochondrial DNA, based on a comprehensive collection of completely sequenced mitochondrial genomes. RESULTS: We determined the complete mitochondrial DNA sequence of 124 cod specimens from the eastern and western part of the species' distribution range in the North Atlantic Ocean. All specimens harboured a unique mitochondrial DNA haplotype. Nine hundred and fifty-two polymorphic sites were identified, including 109 non-synonymous sites within protein coding regions. Eighteen variable sites were identified as indels, exclusively distributed in structural RNA genes and non-coding regions. Phylogeographic analyses based on 156 available cod mitochondrial genomes did not reveal a clear structure. There was a lack of mitochondrial genetic differentiation between two ecotypes of cod in the eastern North Atlantic, but eastern and western cod were differentiated and mitochondrial genome diversity was higher in the eastern than the western Atlantic, suggesting deviating population histories. The geographic distribution of mitochondrial genome variation seems to be governed by demographic processes and gene flow among ecotypes that are otherwise characterized by localized genomic divergence associated with chromosomal inversions.


Subject(s)
DNA, Mitochondrial/genetics , Gadus morhua/genetics , Animals , Genome , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
4.
Cancers (Basel) ; 8(3)2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26950155

ABSTRACT

Meningiomas represent the most common primary tumors of the central nervous system, but few microRNA (miRNA) profiling studies have been reported so far. Deep sequencing of small RNA libraries generated from two human meningioma biopsies WHO grades I (benign) and II (atypical) were compared to excess dura controls. Nineteen differentially expressed miRNAs were validated by RT-qPCR using tumor RNA from 15 patients and 5 meninges controls. Tumor suppressor miR-218 and miR-34a were upregulated relative to normal controls, however, miR-143, miR-193b, miR-451 and oncogenic miR-21 were all downregulated. From 10 selected putative mRNA targets tested by RT-qPCR only four were differentially expressed relative to normal controls. PTEN and E-cadherin (CDH1) were upregulated, but RUNX1T1 was downregulated. Proliferation biomarker p63 was upregulated with nuclear localization, but not detected in most normal arachnoid tissues. Immunoreactivity of E-cadherin was detected in the outermost layer of normal arachnoids, but was expressed throughout the tumors. Nuclear Cyclin D1 expression was positive in all studied meningiomas, while its expression in arachnoid was limited to a few trabecular cells. Meningiomas of grades I and II appear to share biomarkers with malignant tumors, but with some additional tumor suppressor biomarkers expression. Validation in more patients is of importance.

5.
BMC Evol Biol ; 12: 166, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22938158

ABSTRACT

BACKGROUND: Physarales represents the largest taxonomic order among the plasmodial slime molds (myxomycetes). Physarales is of particular interest since the two best-studied myxomycete species, Physarum polycephalum and Didymium iridis, belong to this order and are currently subjected to whole genome and transcriptome analyses. Here we report molecular phylogeny based on ribosomal DNA (rDNA) sequences that includes 57 Physarales isolates. RESULTS: The Physarales nuclear rDNA sequences were found to be loaded with 222 autocatalytic group I introns, which may complicate correct alignments and subsequent phylogenetic tree constructions. Phylogenetic analysis of rDNA sequences depleted of introns confirmed monophyly of the Physarales families Didymiaceae and Physaraceae. Whereas good correlation was noted between phylogeny and taxonomy among the Didymiaceae isolates, significant deviations were seen in Physaraceae. The largest genus, Physarum, was found to be polyphyletic consisting of at least three well supported clades. A synapomorphy, located at the highly conserved G-binding site of L2449 group I intron ribozymes further supported the Physarum clades. CONCLUSIONS: Our results provide molecular relationship of Physarales genera, species, and isolates. This information is important in further interpretations of comparative genomics nd transcriptomics. In addition, the result supports a polyphyletic origin of the genus Physarum and calls for a reevaluation of current taxonomy.


Subject(s)
Myxomycetes/genetics , Phylogeny , Physarum/genetics , DNA, Protozoan/genetics , DNA, Ribosomal/genetics , Introns , Myxomycetes/classification , Physarum/classification
6.
BMC Res Notes ; 5: 245, 2012 May 17.
Article in English | MEDLINE | ID: mdl-22594500

ABSTRACT

BACKGROUND: Recently a large number of short non-coding-RNAs (microRNAs, (miRNA)) have been identified. These miRNAs act as post-transcriptional regulators where they generally have an inhibitory function. miRNAs are present in all human cells, and they are also detected in serum or plasma. The miRNAs have a broad range of actions, and their biogenesis must therefore be under tight control. One putative regulator of miRNA biogenesis or miRNA level could be vitamin D, an ancient hormone with effects on cell growth and differentiation, apoptosis and the immune system. In our study miRNA were reversed transcribed in total RNA isolated from plasma and analyzed by quantitative real-time PCR (qPCR) using the miRCURY LNA Universal RT microRNA PCR system (Exiqon). In 10 pilot subjects 136 miRNAs were detected in one or more plasma samples drawn at baseline and after 12 months of vitamin D supplementation. The twelve miRNAs that showed the greatest change in expression in these pilots were further analyzed by RT-qPCR of RNA from baseline and 12 months plasma samples in 40 subjects given high dose vitamin D(3) (20.000-40.000 IU per week) and 37 subjects given placebo. RESULTS: At baseline there was a significant and positive correlation between serum 25-hydroxyvitamin D and miR-532-3p expression (r = 0.24, P = 0.04). The change in expression of miR-221 from baseline to 12 months (ddCp value) was also significantly different between the vitamin D and placebo group (P =0.04), mainly due to a change in the placebo group. CONCLUSIONS: We have not been able to demonstrate a consistent effect of vitamin D supplementation on the expression profile of miRNA in plasma. However, further studies are needed as this approach might potentially throw light on unknown aspects of vitamin D physiology.


Subject(s)
Cholecalciferol/pharmacology , Dietary Supplements , MicroRNAs/blood , MicroRNAs/genetics , Cholecalciferol/administration & dosage , Cholecalciferol/blood , Dose-Response Relationship, Drug , Female , Gene Expression Regulation/drug effects , Humans , Male , Parathyroid Hormone/blood , Pilot Projects , Placebos , Time Factors
7.
Curr Genet ; 57(3): 213-22, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21484258

ABSTRACT

Expression and processing of mitochondrial gene transcripts are fundamental to mitochondrial function, but information from early vertebrates like teleost fishes is essentially lacking. We have analyzed mitogenome sequences of ten codfishes (family Gadidae), and provide complete sequences from three new species (Saithe, Pollack and Blue whiting). Characterization of the mitochondrial mRNAs in Saithe and Atlantic cod identified a set of ten poly(A) transcripts, and six UAA stop codons are generated by posttranscriptional polyadenylation. Structural assessment of poly(A) sites is consistent with an RNaseP cleavage activity 5' of tRNA acceptor-like stems. COI, ND5 and ND6 mRNAs were found to harbor 3' UTRs with antisense potential extending into neighboring gene regions. While the 3' UTR of COI mRNA is complementary to the tRNA(Ser UCN) and highly similar to that detected in human mitochondria, the ND5 and ND6 3' UTRs appear more heterogenic. Deep sequencing confirms expression of all mitochondrial mRNAs and rRNAs, and provides information about the precise 5' ends in mature transcripts. Our study supports an overall evolutionary conservation in mitochondrial RNA processing events among vertebrates, but reveals some unique 5' and 3' end characteristics in codfish mRNAs with implications to antisense regulation of gene expression.


Subject(s)
Gadiformes/genetics , Mitochondria/genetics , Poly A/genetics , RNA, Messenger/chemistry , RNA, Transfer/chemistry , 3' Untranslated Regions/genetics , 5' Untranslated Regions/genetics , Animals , Antisense Elements (Genetics)/chemistry , Antisense Elements (Genetics)/metabolism , Base Sequence , Codon, Terminator/chemistry , Gadiformes/metabolism , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Mammals/genetics , Mammals/metabolism , Mitochondria/metabolism , Molecular Sequence Data , Open Reading Frames , Poly A/metabolism , Polyadenylation , RNA, Messenger/analysis , RNA, Mitochondrial , RNA, Transfer/analysis
8.
Article in English | MEDLINE | ID: mdl-20493789

ABSTRACT

The Atlantic cod (Gadus morhua) is an emerging aquaculture species. Efforts to develop and characterize its genomic recourses, including draft-grade genome sequencing, have been initiated by the research community. The transcriptome represents the whole complement of RNA transcripts in cells and tissues and reflects the expressed genes at various life stages, tissue types, physiological states, and environmental conditions. We are investigating the Atlantic cod transcriptome by Roche 454, Illumina GA, and ABI SOLiD deep sequencing platforms and corresponding bioinformatics. Both embryonic developmental stages and adult tissues are studied. Here we summarize our recent progress in the analyses of nuclear and mitochondrial polyA mRNAs, non-protein-coding intermediate RNAs, and regulatory microRNAs.


Subject(s)
Gadus morhua/genetics , Genome/genetics , Sequence Analysis, DNA/methods , Animals , Computational Biology , Gene Expression Profiling , MicroRNAs/genetics
9.
N Biotechnol ; 27(3): 267-75, 2010 Jul 31.
Article in English | MEDLINE | ID: mdl-20219706

ABSTRACT

RNA deep sequencing represents a new complementary approach in marine bioprospecting. Next-generation sequencing platforms have recently been developed for de novo whole transcriptome analysis, small RNA discovery and gene expression profiling. Deep sequencing transcriptomics (sequencing the complete set of cellular transcripts at a specific stage or condition) leads to sequential identification of all expressed genes in a sample. When combined to high-throughput bioinformatics and protein synthesis, RNA deep sequencing represents a new powerful approach in gene product discovery and bioprospecting. Here we summarize recent progress in the analyses of hexacoral transcriptomes with the focus on cold-water sea anemones and related organisms.


Subject(s)
Computational Biology/methods , Gene Expression Profiling , High-Throughput Screening Assays , RNA/genetics , Sea Anemones/genetics , Sequence Analysis, RNA , Adaptation, Physiological/genetics , Amino Acid Sequence , Animals , Base Sequence , Cold Temperature , Mitochondria/genetics , Molecular Sequence Data , Nucleic Acid Conformation , Oceans and Seas , RNA/chemistry , RNA/metabolism , Sea Anemones/cytology , Sequence Alignment
11.
N Biotechnol ; 25(5): 263-71, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19491044

ABSTRACT

The Atlantic cod (Gadus morhua) is a key species in the North Atlantic ecosystem and commercial fisheries, with increasing aquacultural production in several countries. A Norwegian effort to sequence the complete 0.9Gbp genome by the 454 pyrosequencing technology has been initiated and is in progress. Here we review recent progress in large-scale sequence analyses of the nuclear genome, the mitochondrial genome and genome-wide microRNA identification in the Atlantic cod. The nuclear genome will be de novo sequenced with 25 times oversampling. A total of 120 mitochondrial genomes, sampled from several locations in the North Atlantic, are being completely sequenced by Sanger technology in a high-throughput pipeline. These sequences will be included in a new database for maternal marker reference of Atlantic cod diversity. High-throughput 454 sequencing, as well as Evolutionary Image Array (EvoArray) informatics, is used to investigate the complete set of expressed microRNAs and corresponding mRNA targets in various developmental stages and tissues. Information about microRNA profiles will be essential in the understanding of transcriptome complexity and regulation. Finally, developments and perspectives of Atlantic cod aquaculture are discussed in the light of next-generation high-throughput sequence technologies.


Subject(s)
Gadus morhua/genetics , Sequence Analysis, DNA/methods , Animals , Atlantic Ocean , Base Sequence , Evolution, Molecular , Fisheries , Forecasting , Genetic Markers , Genome , Genome, Mitochondrial , MicroRNAs/metabolism , Molecular Sequence Data
12.
BMC Evol Biol ; 7: 86, 2007 Jun 07.
Article in English | MEDLINE | ID: mdl-17555567

ABSTRACT

BACKGROUND: The walleye pollock (Theragra chalcogramma) and Norwegian pollock (T. finnmarchica) are confined to the North Pacific and North Atlantic Oceans, respectively, and considered as distinct species within the family Gadidae. We have determined the complete mtDNA nucleotide sequence of two specimens of Norwegian pollock and compared the sequences to that of 10 specimens of walleye pollock representing stocks from the Sea of Japan and the Bering Sea, 2 specimens of Atlantic cod (Gadus morhua), and 2 specimens of haddock (Melanogrammus aeglefinus). RESULTS: A total number of 204 variable positions were identified among the 12 pollock specimens, but no specific substitution pattern could be identified between the walleye and Norwegian pollocks. Phylogenetic analysis using 16,500 homologous mtDNA nucleotide positions clearly identify the Norwegian pollock within the walleye pollock species cluster. Furthermore, the Norwegian pollock sequences were most similar to mitochondrial genotypes present in walleye pollock specimens from the Sea of Japan, an observation supported both by neighbor-joining, maximum parsimony, and maximum likelihood analyses. CONCLUSION: We infer that walleye pollock and Norwegian pollock represent one single species and that Norwegian pollock has been recently introduced from the Pacific to the Atlantic Oceans.


Subject(s)
DNA, Mitochondrial/genetics , Gadiformes/classification , Phylogeny , Animals , Base Sequence , DNA Primers , Gadiformes/genetics , Molecular Sequence Data , Polymerase Chain Reaction
13.
Nucleic Acids Res ; 33(8): 2734-41, 2005.
Article in English | MEDLINE | ID: mdl-15891115

ABSTRACT

The myxomycete Didymium iridis (isolate Panama 2) contains a mobile group I intron named Dir.S956-1 after position 956 in the nuclear small subunit (SSU) rRNA gene. The intron is efficiently spread through homing by the intron-encoded homing endonuclease I-DirI. Homing endonuclease genes (HEGs) usually spread with their associated introns as a unit, but infrequently also spread independent of introns (or inteins). Clear examples of HEG mobility are however sparse. Here, we provide evidence for the transfer of a HEG into a group I intron named Dir.S956-2 that is inserted into the SSU rDNA of the Costa Rica 8 isolate of D.iridis. Similarities between intron sequences that flank the HEG and rDNA sequences that flank the intron (the homing endonuclease recognition sequence) suggest that the HEG invaded the intron during the recent evolution in a homing-like event. Dir.S956-2 is inserted into the same SSU site as Dir.S956-1. Remarkably, the two group I introns encode distantly related splicing ribozymes with phylogenetically related HEGs inserted on the opposite strands of different peripheral loop regions. The HEGs are both interrupted by small spliceosomal introns that must be removed during RNA maturation.


Subject(s)
Endonucleases/genetics , Evolution, Molecular , Introns , DNA, Ribosomal/genetics , Endonucleases/classification , Mutagenesis, Insertional , Myxomycetes/enzymology , Myxomycetes/genetics , Phylogeny , RNA Splicing , RNA, Catalytic/genetics , Spliceosomes/metabolism
14.
Fungal Genet Biol ; 40(3): 252-60, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14599893

ABSTRACT

Different species of the lichen-forming ascomycete fungus Teloschistes were found to contain group IB introns at position S1506 in the small subunit ribosomal RNA gene. We have characterized the structural organization and phylogeny of the Teloschistes introns Tco.S1506, Tla.S1506, and Tvi.S1506. Common features to all the introns are a small size, a compact RNA structure, and an atypical catalytic ribozyme core sequence motif. Variations in intron sizes, due to sequence extensions in the P1 and P8 loop segments, were observed in different species and isolates. Phylogenetic analyses based on the ITS1-5.8S-ITS2 region as well as the introns show that the Teloschistes S1506 introns represent a distinct evolutionary isolated cluster among the nuclear group I introns. Furthermore, introns from different lineages of Teloschistes villosus appear not strictly vertically inherited probably due to horizontal transfer in one of the lineages.


Subject(s)
Ascomycota/genetics , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Introns/genetics , Ascomycota/classification , Base Sequence , Gene Amplification , Molecular Sequence Data , Nucleic Acid Conformation , Phylogeny , RNA, Fungal/genetics , RNA, Ribosomal/genetics , Sequence Alignment , Sequence Homology, Nucleic Acid
15.
J Eukaryot Microbiol ; 50(4): 283-92, 2003.
Article in English | MEDLINE | ID: mdl-15132172

ABSTRACT

Group I introns are relatively common within nuclear ribosomal DNA of eukaryotic microorganisms, especially in myxomycetes. Introns at position S516 in the small subunit ribosomal RNA gene are particularly common, but have a sporadic occurrence in myxomycetes. Fuligo septica, Badhamia gracilis, and Physarum flavicomum, all members of the family Physaraceae, contain related group IC1 introns at this site. The F. septica intron was studied at the molecular level and found to self-splice as naked RNA and to generate full-length intron RNA circles during incubation. Group I introns at position S516 appear to have a particularly widespread distribution among protists and fungi. Secondary structural analysis of more than 140 S516 group I introns available in the database revealed five different types of organization, including IC1 introns with and without His-Cys homing endonuclease genes, complex twin-ribozyme introns, IE introns, and degenerate group I-like introns. Both intron structural and phylogenetic analyses indicate a multiple origin of the S516 introns during evolution. The myxomycete introns are related to S516 introns in the more distantly related brown algae and Acanthamoeba species. Possible mechanisms of intron transfer both at the RNA- and DNA-levels are discussed in order to explain the observed widespread, but scattered, phylogenetic distribution.


Subject(s)
DNA, Ribosomal/genetics , Evolution, Molecular , Introns/genetics , Myxomycetes/genetics , RNA Splicing , RNA, Ribosomal/chemistry , Models, Genetic , Nucleic Acid Conformation , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...