Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 308
Filter
1.
J Alzheimers Dis ; 100(1): 163-174, 2024.
Article in English | MEDLINE | ID: mdl-38848188

ABSTRACT

Background: The Adult Changes in Thought (ACT) study is a cohort of Kaiser Permanente Washington members ages 65+ that began in 1994. Objective: We wanted to know how well ACT participants represented all older adults in the region, and how well ACT findings on eye disease and its relationship with Alzheimer's disease generalized to all older adults in the Seattle Metropolitan Region. Methods: We used participation weights derived from pooling ACT and Behavioral Risk Factor Surveillance System (BRFSS) data to estimate prevalences of common eye diseases and their associations with Alzheimer's disease incidence. Cox proportional hazards models accounted for age, education, smoking, sex, and APOE genotype. Confidence intervals for weighted analyses were bootstrapped to account for error in estimating the weights. Results: ACT participants were fairly similar to older adults in the region. The largest differences were more self-reported current cholesterol medication use in BRFSS and higher proportions with low education in ACT. Incorporating the weights had little impact on prevalence estimates for age-related macular degeneration or glaucoma. Weighted estimates were slightly higher for diabetic retinopathy (weighted 5.7% (95% Confidence Interval 4.3, 7.1); unweighted 4.1% (3.6, 4.6)) and cataract history (weighted 51.8% (49.6, 54.3); unweighted 48.6% (47.3, 49.9)). The weighted hazard ratio for recent diabetic retinopathy diagnosis and Alzheimer's disease was 1.84 (0.34, 4.29), versus 1.32 (0.87, 2.00) in unweighted ACT. Conclusions: Most, but not all, associations were similar after participation weighting. Even in community-based cohorts, extending inferences to broader populations may benefit from evaluation with participation weights.


Subject(s)
Alzheimer Disease , Humans , Male , Female , Aged , Aged, 80 and over , Cohort Studies , Prospective Studies , Alzheimer Disease/epidemiology , Eye Diseases/epidemiology , Washington/epidemiology , Prevalence , Proportional Hazards Models , Behavioral Risk Factor Surveillance System , Residence Characteristics
2.
J Alzheimers Dis ; 100(1): 309-320, 2024.
Article in English | MEDLINE | ID: mdl-38875039

ABSTRACT

Background: Conflicting research on retinal biomarkers of Alzheimer's disease and related dementias (AD/ADRD) is likely related to limited sample sizes, study design, and protocol differences. Objective: The prospective Eye Adult Changes in Thought (Eye ACT) seeks to address these gaps. Methods: Eye ACT participants are recruited from ACT, an ongoing cohort of dementia-free, older adults followed biennially until AD/ADRD, and undergo visual function and retinal imaging assessment either in clinic or at home. Results: 330 participants were recruited as of 03/2023. Compared to ACT participants not in Eye ACT (N = 1868), Eye ACT participants (N = 330) are younger (mean age: 70.3 versus 71.2, p = 0.014), newer to ACT (median ACT visits since baseline: 3 versus 4, p < 0.001), have more years of education (17.7 versus 16.2, p < 0.001) and had lower rates of visual impairment (12% versus 22%, p < 0.001). Compared to those seen in clinic (N = 300), Eye ACT participants seen at home (N = 30) are older (77.2 versus 74.9, p = 0.015), more frequently female (60% versus 49%, p = 0.026), and have significantly worse visual acuity (71.1 versus 78.9 Early Treatment Diabetic Retinopathy Study letters, p < 0.001) and contrast sensitivity (-1.9 versus -2.1 mean log units at 3 cycles per degree, p = 0.002). Cognitive scores and retinal imaging measurements are similar between the two groups. Conclusions: Participants assessed at home had significantly worse visual function than those seen in clinic. By including these participants, Eye ACT provides a unique longitudinal cohort for evaluating potential retinal biomarkers of dementia.


Subject(s)
Alzheimer Disease , Humans , Female , Male , Aged , Prospective Studies , Cohort Studies , Alzheimer Disease/diagnostic imaging , Retina/diagnostic imaging , Aged, 80 and over , Vision Disorders , Middle Aged , Dementia/diagnostic imaging , Tomography, Optical Coherence , Research Design
3.
bioRxiv ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38915664

ABSTRACT

Throughout an organism's life, a multitude of biological systems transition through complex biophysical processes. These processes serve as indicators of the underlying biological states. Inferring these latent unobserved states is a key problem in modern biology and neuroscience. Unfortunately, in many experimental setups we can at best obtain snapshots of the system at different times for different individuals, and one major challenge is the one of reconciling those measurements. This formalism is particularly relevant in the study of Alzheimer's Disease (AD) progression, in which we observe in brain donors the aggregation of pathological proteins but the underlying disease state is unknown. The progression of AD can be modeled by assigning a latent score - termed pseudotime - to each pathological state, creating a pseudotemporal ordering of donors based on their pathological burden. This paper proposes a hierarchical Bayesian framework to model AD progression using detailed quantification of multiple AD pathological proteins from the Seattle AD Brain Cell Atlas consortium (SEA-AD). Inspired by biophysical models, we model pathological burden as an exponential process. Theoretical properties of the model are studied, by using linearization to reveal convergence and identifiability properties. We provide Markov chain Monte Carlo estimation algorithms, and show the effectiveness of our approach with multiple simulation studies across data conditions. Applying the methodology to SEA-AD brain data, we infer pseudotime for each donor and order them by pathological burden. Finally, we analyze the information within each pathological feature and utilize it to refine the model by focusing on the most informative pathologies. This lays the groundwork for suggesting future experimental design approaches.

4.
Diabetes Obes Metab ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764360

ABSTRACT

AIM: To examine cross-sectional associations between continuous glucose monitoring (CGM)-derived metrics and cerebral small vessel disease (SVD) in older adults with type 2 diabetes. MATERIALS AND METHODS: In total, 80 patients with type 2 diabetes aged ≥70 years were analysed. Participants underwent CGM for 14 days. From the CGM data, we derived mean sensor glucose, percentage glucose coefficient of variation, mean amplitude of glucose excursion, time in range (TIR, 70-180 mg/dl), time above range (TAR) and time below range metrics, glycaemia risk index and high/low blood glucose index. The presence of cerebral SVD, including lacunes, microbleeds, enlarged perivascular spaces and white matter hyperintensities, was assessed, and the total number of these findings comprised the total cerebral SVD score (0-4). Ordinal logistic regression analyses were performed to examine the association of CGM-derived metrics with the total SVD score. RESULTS: The median SVD score was 1 (interquartile range 0-2). Higher hyperglycaemic metrics, including mean sensor glucose, TAR >180 mg/dl, TAR >250 mg/dl, and high blood glucose index and glycaemia risk index, were associated with a higher total SVD score. In contrast, a higher TIR (per 10% increase) was associated with a lower total SVD score (odds ratio 0.73, 95% confidence interval 0.56-0.95). Glycated haemoglobin, percentage glucose coefficient of variation, mean amplitude of glucose excursions, time below range and low blood glucose index were not associated with total cerebral SVD scores. CONCLUSIONS: The hyperglycaemia metrics and TIR, derived from CGM, were associated with cerebral SVD in older adults with type 2 diabetes.

5.
Elife ; 122024 May 24.
Article in English | MEDLINE | ID: mdl-38787369

ABSTRACT

Rich data from large biobanks, coupled with increasingly accessible association statistics from genome-wide association studies (GWAS), provide great opportunities to dissect the complex relationships among human traits and diseases. We introduce BADGERS, a powerful method to perform polygenic score-based biobank-wide association scans. Compared to traditional approaches, BADGERS uses GWAS summary statistics as input and does not require multiple traits to be measured in the same cohort. We applied BADGERS to two independent datasets for late-onset Alzheimer's disease (AD; n=61,212). Among 1738 traits in the UK biobank, we identified 48 significant associations for AD. Family history, high cholesterol, and numerous traits related to intelligence and education showed strong and independent associations with AD. Furthermore, we identified 41 significant associations for a variety of AD endophenotypes. While family history and high cholesterol were strongly associated with AD subgroups and pathologies, only intelligence and education-related traits predicted pre-clinical cognitive phenotypes. These results provide novel insights into the distinct biological processes underlying various risk factors for AD.


Subject(s)
Alzheimer Disease , Biological Specimen Banks , Endophenotypes , Genome-Wide Association Study , Alzheimer Disease/genetics , Humans , Risk Factors , Male , Female , United Kingdom/epidemiology , Aged , Genetic Predisposition to Disease , Multifactorial Inheritance/genetics , Aged, 80 and over
6.
Diabetes Care ; 47(5): 864-872, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38470970

ABSTRACT

OBJECTIVE: To determine the impact of type 2 diabetes and glycated hemoglobin (HbA1c) levels within the recommended target range according to the Japan Diabetes Society/Japan Geriatrics Society Joint Committee on mortality in older adults with cognitive impairment. RESEARCH DESIGN AND METHODS: This retrospective cohort study included 1,528 and 468 patients aged ≥65 years without and with type 2 diabetes, respectively, who were visiting a memory clinic. The 468 patients with type 2 diabetes were divided into three groups (within, above, and below the target range) based on their HbA1c levels, cognitive function, ability to perform activities of daily living, and medications associated with a high risk of hypoglycemia. The impact of diabetes and HbA1c levels on mortality was evaluated using Cox proportional hazards models. RESULTS: Over a median follow-up period of 3.8 years, 353 patients (17.7%) died. Compared with individuals without type 2 diabetes, HbA1c levels above (hazard ratio [HR] 1.70, 95% CI 1.08-2.69) and below (HR 2.15, 95% CI 1.33-3.48) the target range were associated with a higher risk of death; however, HbA1c levels within the target range were not (HR 1.02, 95% CI 0.77-1.36). CONCLUSIONS: HbA1c levels above and below the target range were associated with a higher risk of mortality, whereas patients with HbA1c levels within the target range did not exhibit a higher risk of mortality than individuals without type 2 diabetes. These results provide empirical support for the current target ranges among older adults with cognitive impairment.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Humans , Aged , Diabetes Mellitus, Type 2/complications , Glycated Hemoglobin , Retrospective Studies , Activities of Daily Living , Risk Factors , Cognitive Dysfunction/complications
7.
Neurology ; 102(3): e208060, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38175995

ABSTRACT

BACKGROUND AND OBJECTIVES: The aim of this study was to compare 2 large clinicopathologic cohorts of participants aged 90+ and to determine whether the association between neuropathologic burden and dementia in these older groups differs substantially from those seen in younger-old adults. METHODS: Autopsied participants from The 90+ Study and Adult Changes in Thought (ACT) Study community-based cohort studies were evaluated for dementia-associated neuropathologic changes. Associations between neuropathologic variables and dementia were assessed using logistic or linear regression, and the weighted population attributable fraction (PAF) per type of neuropathologic change was estimated. RESULTS: The 90+ Study participants (n = 414) were older (mean age at death = 97.7 years) and had higher amyloid/tau burden than ACT <90 (n = 418) (mean age at death = 83.5 years) and ACT 90+ (n = 401) (mean age at death = 94.2 years) participants. The ACT 90+ cohort had significantly higher rates of limbic-predominant age-related TDP-43 encephalopathy (LATE-NC), microvascular brain injury (µVBI), and total neuropathologic burden. Independent associations between individual neuropathologic lesions and odds of dementia were similar between all 3 groups, with the exception of µVBI, which was associated with increased dementia risk in the ACT <90 group only (odds ratio 1.5, 95% CI 1.2-1.8, p < 0.001). Weighted PAF scores indicated that eliminating µVBI, although more prevalent in ACT 90+ participants, would have little effect on dementia. Conversely, eliminating µVBI in ACT <90 could theoretically reduce dementia at a similar rate to that of AD neuropathologic change (weighted PAF = 6.1%, 95% CI 3.8-8.4, p = 0.001). Furthermore, reducing LATE-NC in The 90+ Study could potentially reduce dementia to a greater degree (weighted PAF = 5.1%, 95% CI 3.0-7.3, p = 0.001) than either ACT cohort (weighted PAFs = 1.69, 95% CI 0.4-2.7). DISCUSSION: Our results suggest that specific neuropathologic features may differ in their effect on dementia among nonagenarians and centenarians from cohorts with different selection criteria and study design. Furthermore, microvascular lesions seem to have a more significant effect on dementia in younger compared with older participants. The results from this study demonstrate that different populations may require distinct dementia interventions, underscoring the need for disease-specific biomarkers.


Subject(s)
Alzheimer Disease , Dementia , Nervous System Diseases , Aged, 80 and over , Humans , Alzheimer Disease/pathology , Brain/pathology , Centenarians , Nonagenarians , Dementia/epidemiology , Dementia/pathology , Nervous System Diseases/pathology
8.
Environ Int ; 183: 108418, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38185046

ABSTRACT

BACKGROUND: While epidemiologic evidence links higher levels of exposure to fine particulate matter (PM2.5) to decreased cognitive function, fewer studies have investigated links with traffic-related air pollution (TRAP), and none have examined ultrafine particles (UFP, ≤100 nm) and late-life dementia incidence. OBJECTIVE: To evaluate associations between TRAP exposures (UFP, black carbon [BC], and nitrogen dioxide [NO2]) and late-life dementia incidence. METHODS: We ascertained dementia incidence in the Seattle-based Adult Changes in Thought (ACT) prospective cohort study (beginning in 1994) and assessed ten-year average TRAP exposures for each participant based on prediction models derived from an extensive mobile monitoring campaign. We applied Cox proportional hazards models to investigate TRAP exposure and dementia incidence using age as the time axis and further adjusting for sex, self-reported race, calendar year, education, socioeconomic status, PM2.5, and APOE genotype. We ran sensitivity analyses where we did not adjust for PM2.5 and other sensitivity and secondary analyses where we adjusted for multiple pollutants, applied alternative exposure models (including total and size-specific UFP), modified the adjustment covariates, used calendar year as the time axis, assessed different exposure periods, dementia subtypes, and others. RESULTS: We identified 1,041 incident all-cause dementia cases in 4,283 participants over 37,102 person-years of follow-up. We did not find evidence of a greater hazard of late-life dementia incidence with elevated levels of long-term TRAP exposures. The estimated hazard ratio of all-cause dementia was 0.98 (95 % CI: 0.92-1.05) for every 2000 pt/cm3 increment in UFP, 0.95 (0.89-1.01) for every 100 ng/m3 increment in BC, and 0.96 (0.91-1.02) for every 2 ppb increment in NO2. These findings were consistent across sensitivity and secondary analyses. DISCUSSION: We did not find evidence of a greater hazard of late-life dementia risk with elevated long-term TRAP exposures in this population-based prospective cohort study.


Subject(s)
Air Pollutants , Air Pollution , Dementia , Adult , Humans , Air Pollutants/analysis , Air Pollution/analysis , Environmental Exposure/analysis , Prospective Studies , Nitrogen Dioxide/analysis , Incidence , Particulate Matter/analysis , Dementia/epidemiology
9.
Alzheimers Dement ; 20(3): 1739-1752, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38093529

ABSTRACT

INTRODUCTION: We sought to determine structural magnetic resonance imaging (MRI) characteristics across subgroups defined based on relative cognitive domain impairments using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and to compare cognitively defined to imaging-defined subgroups. METHODS: We used data from 584 people with Alzheimer's disease (AD) (461 amyloid positive, 123 unknown amyloid status) and 118 amyloid-negative controls. We used voxel-based morphometry to compare gray matter volume (GMV) for each group compared to controls and to AD-Memory. RESULTS: There was pronounced bilateral lower medial temporal lobe atrophy with relative cortical sparing for AD-Memory, lower left hemisphere GMV for AD-Language, anterior lower GMV for AD-Executive, and posterior lower GMV for AD-Visuospatial. Formal asymmetry comparisons showed substantially more asymmetry in the AD-Language group than any other group (p = 1.15 × 10-10 ). For overlap between imaging-defined and cognitively defined subgroups, AD-Memory matched up with an imaging-defined limbic predominant group. DISCUSSION: MRI findings differ across cognitively defined AD subgroups.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Brain/diagnostic imaging , Brain/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Neuroimaging/methods , Magnetic Resonance Imaging , Atrophy/pathology
10.
Alzheimers Dement ; 20(2): 1250-1267, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984853

ABSTRACT

BACKGROUND: Women demonstrate a memory advantage when cognitively healthy yet lose this advantage to men in Alzheimer's disease. However, the genetic underpinnings of this sex difference in memory performance remain unclear. METHODS: We conducted the largest sex-aware genetic study on late-life memory to date (Nmales  = 11,942; Nfemales  = 15,641). Leveraging harmonized memory composite scores from four cohorts of cognitive aging and AD, we performed sex-stratified and sex-interaction genome-wide association studies in 24,216 non-Hispanic White and 3367 non-Hispanic Black participants. RESULTS: We identified three sex-specific loci (rs67099044-CBLN2, rs719070-SCHIP1/IQCJ-SCHIP), including an X-chromosome locus (rs5935633-EGL6/TCEANC/OFD1), that associated with memory. Additionally, we identified heparan sulfate signaling as a sex-specific pathway and found sex-specific genetic correlations between memory and cardiovascular, immune, and education traits. DISCUSSION: This study showed memory is highly and comparably heritable across sexes, as well as highlighted novel sex-specific genes, pathways, and genetic correlations that related to late-life memory. HIGHLIGHTS: Demonstrated the heritable component of late-life memory is similar across sexes. Identified two genetic loci with a sex-interaction with baseline memory. Identified an X-chromosome locus associated with memory decline in females. Highlighted sex-specific candidate genes and pathways associated with memory. Revealed sex-specific shared genetic architecture between memory and complex traits.


Subject(s)
Alzheimer Disease , Cognitive Aging , Humans , Male , Female , Genome-Wide Association Study , Alzheimer Disease/genetics , Cognition , Sex Characteristics
11.
Alzheimers Dement ; 20(2): 1268-1283, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37985223

ABSTRACT

INTRODUCTION: Although large-scale genome-wide association studies (GWAS) have been conducted on AD, few have been conducted on continuous measures of memory performance and memory decline. METHODS: We conducted a cross-ancestry GWAS on memory performance (in 27,633 participants) and memory decline (in 22,365 participants; 129,201 observations) by leveraging harmonized cognitive data from four aging cohorts. RESULTS: We found high heritability for two ancestry backgrounds. Further, we found a novel ancestry locus for memory decline on chromosome 4 (rs6848524) and three loci in the non-Hispanic Black ancestry group for memory performance on chromosomes 2 (rs111471504), 7 (rs4142249), and 15 (rs74381744). In our gene-level analysis, we found novel genes for memory decline on chromosomes 1 (SLC25A44), 11 (BSX), and 15 (DPP8). Memory performance and memory decline shared genetic architecture with AD-related traits, neuropsychiatric traits, and autoimmune traits. DISCUSSION: We discovered several novel loci, genes, and genetic correlations associated with late-life memory performance and decline. HIGHLIGHTS: Late-life memory has high heritability that is similar across ancestries. We discovered four novel variants associated with late-life memory. We identified four novel genes associated with late-life memory. Late-life memory shares genetic architecture with psychiatric/autoimmune traits.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Genome-Wide Association Study , Endophenotypes , Genetic Predisposition to Disease/genetics , Cognition , Memory Disorders/genetics , Polymorphism, Single Nucleotide/genetics
12.
Psychol Methods ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095987

ABSTRACT

Repeated measure data design has been used extensively in a wide range of fields, such as brain aging or developmental psychology, to answer important research questions exploring relationships between trajectory of change and external variables. In many cases, such data may be collected from multiple study cohorts and harmonized, with the intention of gaining higher statistical power and enhanced external validity. When psychological constructs are measured using survey scales, a fundamental psychometric challenge for data harmonization is to create commensurate measures for the constructs of interest across studies. Traditional analysis may fit a unidimensional item response theory model to data from one time point and one cohort to obtain item parameters and fix the same parameters in subsequent analyses. Such a simplified approach ignores item residual dependencies in the repeated measure design on one hand, and on the other hand, it does not exploit accumulated information from different cohorts. Instead, two alternative approaches should serve such data designs much better: an integrative approach using multiple-group two-tier model via concurrent calibration, and if such calibration fails to converge, a Bayesian sequential calibration approach that uses informative priors on common items to establish the scale. Both approaches use a Markov chain Monte Carlo algorithm that handles computational complexity well. Through a simulation study and an empirical study using Alzheimer's diseases neuroimage initiative cognitive battery data (i.e., language and executive functioning), we conclude that latent change scores obtained from these two alternative approaches are more precisely recovered. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

14.
Sci Rep ; 13(1): 18532, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898691

ABSTRACT

Clostridioides difficile (C. diff.) infection (CDI) is a leading cause of hospital acquired diarrhea in North America and Europe and a major cause of morbidity and mortality. Known risk factors do not fully explain CDI susceptibility, and genetic susceptibility is suggested by the fact that some patients with colons that are colonized with C. diff. do not develop any infection while others develop severe or recurrent infections. To identify common genetic variants associated with CDI, we performed a genome-wide association analysis in 19,861 participants (1349 cases; 18,512 controls) from the Electronic Medical Records and Genomics (eMERGE) Network. Using logistic regression, we found strong evidence for genetic variation in the DRB locus of the MHC (HLA) II region that predisposes individuals to CDI (P > 1.0 × 10-14; OR 1.56). Altered transcriptional regulation in the HLA region may play a role in conferring susceptibility to this opportunistic enteric pathogen.


Subject(s)
Clostridium Infections , Genome-Wide Association Study , Humans , Clostridium Infections/genetics , Diarrhea , Histocompatibility Antigens , HLA Antigens/genetics , Histocompatibility Antigens Class II , Genetic Variation
15.
PLoS One ; 18(10): e0292068, 2023.
Article in English | MEDLINE | ID: mdl-37796845

ABSTRACT

BACKGROUND: The prevalence of substance use in people with HIV (PWH) in the United States is higher than in the general population and is an important driver of HIV-related outcomes. We sought to assess if previously identified genetic associations that contribute to substance use are also observed in a population of PWH. METHODS: We performed genome-wide association studies (GWAS) of alcohol, smoking, and cannabis use phenotypes in a multi-ancestry population of 7,542 PWH from the Center for AIDS Research Network of Integrated Clinical Systems (CNICS). We conducted multi-ancestry GWAS for individuals of African (n = 3,748), Admixed American (n = 1,334), and European (n = 2,460) ancestry. Phenotype data were self-reported and collected using patient reported outcomes (PROs) and three questions from AUDIT-C, an alcohol screening tool. We analyzed nine phenotypes: 1) frequency of alcohol consumption, 2) typical number of drinks on a day when drinking alcohol, 3) frequency of five or more alcoholic drinks in a 30-day period, 4) smoking initiation, 5) smoking cessation, 6) cigarettes per day, 7) cannabis use initiation, 8) cannabis use cessation, 9) frequency of cannabis use during the previous 30 days. For each phenotype we considered a) variants previously identified as associated with a substance use trait and b) novel associations. RESULTS: We observed evidence for effects of previously reported single nucleotide polymorphisms (SNPs) related to alcohol (rs1229984, p = 0.001), tobacco (rs11783093, p = 2.22E-4), and cannabis use (rs2875907, p = 0.005). We also report two novel loci (19p13.2, p = 1.3E-8; and 20p11.21, p = 2.1E-8) associated with cannabis use cessation. CONCLUSIONS: Our analyses contribute to understanding the genetic bases of substance use in a population with relatively higher rates of use compared to the general population.


Subject(s)
Cannabis , HIV Infections , Substance-Related Disorders , Humans , United States/epidemiology , Genome-Wide Association Study , Smoking/genetics , Smoking/epidemiology , Alcohol Drinking/genetics , Alcohol Drinking/epidemiology , Substance-Related Disorders/epidemiology , Substance-Related Disorders/genetics , Cannabis/genetics , Ethanol , HIV Infections/epidemiology , HIV Infections/genetics
16.
JAMA Netw Open ; 6(10): e2340249, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37902753

ABSTRACT

Importance: High visit-to-visit blood pressure variability (BPV) in late life may reflect increased dementia risk better than mean systolic blood pressure (SBP). Evidence from midlife to late life could be crucial to understanding this association. Objective: To determine whether visit-to-visit BPV at different ages was differentially associated with lifetime incident dementia risk in community-dwelling individuals. Design, Setting, and Participants: This cohort study analyzed data from the Adult Changes in Thought (ACT) study, an ongoing population-based prospective cohort study in the US. Participants were 65 years or older at enrollment, community-dwelling, and without dementia. The study focused on a subset of deceased participants with brain autopsy data and whose midlife to late-life blood pressure data were obtained from Kaiser Permanente Washington medical archives and collected as part of the postmortem brain donation program. In the ACT study, participants underwent biennial medical assessments, including cognitive screening. Data were collected from 1994 (ACT study enrollment) through November 2019 (data set freeze). Data analysis was performed between March 2020 and September 2023. Exposures: Visit-by-visit BPV at ages 60, 70, 80, and 90 years, calculated using the coefficient of variation of year-by-year SBP measurements over the preceding 10 years. Main Outcomes and Measures: All-cause dementia, which was adjudicated by a multidisciplinary outcome adjudication committee. Results: A total of 820 participants (mean [SD] age at enrollment, 77.0 [6.7] years) were analyzed and included 476 females (58.0%). A mean (SD) of 28.4 (8.4) yearly SBP measurements were available over 31.5 (9.0) years. The mean (SD) follow-up time was 32.2 (9.1) years in 27 885 person-years from midlife to death. Of the participants, 372 (45.4%) developed dementia. The number of participants who were alive without dementia and had available data for analysis ranged from 280 of those aged 90 years to 702 of those aged 70 years. Higher BPV was not associated with higher lifetime dementia risk at age 60, 70, or 80 years. At age 90 years, BPV was associated with 35% higher dementia risk (hazard ratio [HR], 1.35; 95% CI, 1.02-1.79). Meta-regression of HRs calculated separately for each age (60-90 years) indicated that associations of high BPV with higher dementia risk were present only at older ages, whereas the association of SBP with dementia gradually shifted direction linearly from being incrementally to inversely associated with older ages. Conclusions and Relevance: In this cohort study, high BPV indicated increased lifetime dementia risk in late life but not in midlife. This result suggests that high BPV may indicate increased dementia risk in older age but might be less viable as a midlife dementia prevention target.


Subject(s)
Dementia , Hypertension , Adult , Female , Humans , Aged, 80 and over , Blood Pressure , Cohort Studies , Prospective Studies , Hypertension/epidemiology , Dementia/epidemiology
17.
Aging Cell ; 22(10): e13955, 2023 10.
Article in English | MEDLINE | ID: mdl-37584418

ABSTRACT

Inflammatory protein biomarkers induced by immune responses have been associated with cognitive decline and the pathogenesis of Alzheimer's disease (AD). Here, we investigate associations between a panel of inflammatory biomarkers and cognitive function and incident dementia outcomes in the well-characterized Framingham Heart Study Offspring cohort. Participants aged ≥40 years and dementia-free at Exam 7 who had a stored plasma sample were selected for profiling using the OLINK proteomics inflammation panel. Cross-sectional associations of the biomarkers with cognitive domain scores (N = 708, 53% female, 22% apolipoprotein E (APOE) ε4 carriers, 15% APOE ε2 carriers, mean age 61) and incident all-cause and AD dementia during up to 20 years of follow-up were tested. APOE genotype-stratified analyses were performed to explore effect modification. Higher levels of 12 and 3 proteins were associated with worse executive function and language domain factor scores, respectively. Several proteins were associated with more than one cognitive domain, including IL10, LIF-R, TWEAK, CCL19, IL-17C, MCP-4, and TGF-alpha. Stratified analyses suggested differential effects between APOE ε2 and ε4 carriers: most ε4 carrier associations were with executive function and memory domains, whereas most ε2 associations were with the visuospatial domain. Higher levels of TNFB and CDCP1 were associated with higher risks of incident all-cause and AD dementia. Our study found that TWEAK concentration was associated both with cognitive function and risks for AD dementia. The association of these inflammatory biomarkers with cognitive function and incident dementia may contribute to the discovery of therapeutic interventions for the prevention and treatment of cognitive decline.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Female , Male , Apolipoprotein E2 , Cross-Sectional Studies , Genotype , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Cognition , Apolipoproteins E/genetics , Cognitive Dysfunction/genetics , Apolipoprotein E4 , Longitudinal Studies , Biomarkers , Antigens, Neoplasm , Cell Adhesion Molecules
18.
JAMA Neurol ; 80(9): 929-939, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37459083

ABSTRACT

Importance: Sex differences are established in associations between apolipoprotein E (APOE) ε4 and cognitive impairment in Alzheimer disease (AD). However, it is unclear whether sex-specific cognitive consequences of APOE are consistent across races and extend to the APOE ε2 allele. Objective: To investigate whether sex and race modify APOE ε4 and ε2 associations with cognition. Design, Setting, and Participants: This genetic association study included longitudinal cognitive data from 4 AD and cognitive aging cohorts. Participants were older than 60 years and self-identified as non-Hispanic White or non-Hispanic Black (hereafter, White and Black). Data were previously collected across multiple US locations from 1994 to 2018. Secondary analyses began December 2021 and ended September 2022. Main Outcomes and Measures: Harmonized composite scores for memory, executive function, and language were generated using psychometric approaches. Linear regression assessed interactions between APOE ε4 or APOE ε2 and sex on baseline cognitive scores, while linear mixed-effect models assessed interactions on cognitive trajectories. The intersectional effect of race was modeled using an APOE × sex × race interaction term, assessing whether APOE × sex interactions differed by race. Models were adjusted for age at baseline and corrected for multiple comparisons. Results: Of 32 427 participants who met inclusion criteria, there were 19 007 females (59%), 4453 Black individuals (14%), and 27 974 White individuals (86%); the mean (SD) age at baseline was 74 years (7.9). At baseline, 6048 individuals (19%) had AD, 4398 (14%) were APOE ε2 carriers, and 12 538 (38%) were APOE ε4 carriers. Participants missing APOE status were excluded (n = 9266). For APOE ε4, a robust sex interaction was observed on baseline memory (ß = -0.071, SE = 0.014; P = 9.6 × 10-7), whereby the APOE ε4 negative effect was stronger in females compared with males and did not significantly differ among races. Contrastingly, despite the large sample size, no APOE ε2 × sex interactions on cognition were observed among all participants. When testing for intersectional effects of sex, APOE ε2, and race, an interaction was revealed on baseline executive function among individuals who were cognitively unimpaired (ß = -0.165, SE = 0.066; P = .01), whereby the APOE ε2 protective effect was female-specific among White individuals but male-specific among Black individuals. Conclusions and Relevance: In this study, while race did not modify sex differences in APOE ε4, the APOE ε2 protective effect could vary by race and sex. Although female sex enhanced ε4-associated risk, there was no comparable sex difference in ε2, suggesting biological pathways underlying ε4-associated risk are distinct from ε2 and likely intersect with age-related changes in sex biology.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Aged , Female , Humans , Male , Alleles , Alzheimer Disease/genetics , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Cognition , Executive Function , Genotype
19.
Alzheimers Dement ; 19(9): 4187-4195, 2023 09.
Article in English | MEDLINE | ID: mdl-37390458

ABSTRACT

INTRODUCTION: Sequencing efforts to identify genetic variants and pathways underlying Alzheimer's disease (AD) have largely focused on late-onset AD although early-onset AD (EOAD), accounting for ∼10% of cases, is largely unexplained by known mutations, resulting in a lack of understanding of its molecular etiology. METHODS: Whole-genome sequencing and harmonization of clinical, neuropathological, and biomarker data of over 5000 EOAD cases of diverse ancestries. RESULTS: A publicly available genomics resource for EOAD with extensive harmonized phenotypes. Primary analysis will (1) identify novel EOAD risk loci and druggable targets; (2) assess local-ancestry effects; (3) create EOAD prediction models; and (4) assess genetic overlap with cardiovascular and other traits. DISCUSSION: This novel resource complements over 50,000 control and late-onset AD samples generated through the Alzheimer's Disease Sequencing Project (ADSP). The harmonized EOAD/ADSP joint call will be available through upcoming ADSP data releases and will allow for additional analyses across the full onset range. HIGHLIGHTS: Sequencing efforts to identify genetic variants and pathways underlying Alzheimer's disease (AD) have largely focused on late-onset AD although early-onset AD (EOAD), accounting for ∼10% of cases, is largely unexplained by known mutations. This results in a significant lack of understanding of the molecular etiology of this devastating form of the disease. The Early-Onset Alzheimer's Disease Whole-genome Sequencing Project is a collaborative initiative to generate a large-scale genomics resource for early-onset Alzheimer's disease with extensive harmonized phenotype data. Primary analyses are designed to (1) identify novel EOAD risk and protective loci and druggable targets; (2) assess local-ancestry effects; (3) create EOAD prediction models; and (4) assess genetic overlap with cardiovascular and other traits. The harmonized genomic and phenotypic data from this initiative will be available through NIAGADS.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Mutation/genetics , Age of Onset
20.
Nat Med ; 29(7): 1662-1670, 2023 07.
Article in English | MEDLINE | ID: mdl-37322115

ABSTRACT

Clonal hematopoiesis of indeterminate potential (CHIP) is a premalignant expansion of mutated hematopoietic stem cells. As CHIP-associated mutations are known to alter the development and function of myeloid cells, we hypothesized that CHIP may also be associated with the risk of Alzheimer's disease (AD), a disease in which brain-resident myeloid cells are thought to have a major role. To perform association tests between CHIP and AD dementia, we analyzed blood DNA sequencing data from 1,362 individuals with AD and 4,368 individuals without AD. Individuals with CHIP had a lower risk of AD dementia (meta-analysis odds ratio (OR) = 0.64, P = 3.8 × 10-5), and Mendelian randomization analyses supported a potential causal association. We observed that the same mutations found in blood were also detected in microglia-enriched fraction of the brain in seven of eight CHIP carriers. Single-nucleus chromatin accessibility profiling of brain-derived nuclei in six CHIP carriers revealed that the mutated cells comprised a large proportion of the microglial pool in the samples examined. While additional studies are required to validate the mechanistic findings, these results suggest that CHIP may have a role in attenuating the risk of AD.


Subject(s)
Alzheimer Disease , Precancerous Conditions , Humans , Clonal Hematopoiesis , Alzheimer Disease/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cells , Mutation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...