Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 194(11): 814, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36131187

ABSTRACT

In this study, site-specific natural background levels (NBLs) were determined for 18 elements (Al, As, Be, Cd, Co, Cu, Cr, Fe, Hg, K, Mn, Mo, Ni, Pb, Tl, U, V, and Zn) in two sediment cores collected offshore the Bagnoli-Coroglio brownfield site (Gulf of Pozzuoli, southern Italy) to accurately assess the degree of contamination and the historical trends in Heavy Metals (HMs) enrichment. This objective was pursued taking in account the high temporal and spatial variability of the geochemical properties of the area due to the local geothermal activity. Moreover, the temporal variation of Polycyclic Aromatic Hydrocarbons (PAHs) was investigated.226Ra was used as an extraordinary marker to confirm 210Pb dating. It especially allowed defining the geochronological framework of the sediment core closer the brownfield up to around 1500, providing compelling support to correlate the investigated elements' occurrences with natural geogenic dynamic. Sediment samples were accurately dated and analyzed for chemical and particle size composition. The contamination factor (Cf) and the pollution load index (PLI) showed very high enrichment of Cd, Cu, Hg, Pb, and Zn. The contamination profiles of HMs and PAHs follow the same pattern in both sediment cores, increasing from deep to upper layers. The highest contamination levels for HMs and PAHs were observed between 10 and 30 cm, corresponding to the periods of most intense industrial activity. Decreasing trends of pollutants were observed in the surface layers (0-10 cm), probably affected by a natural attenuation process due to the cessation of industrial activities.


Subject(s)
Mercury , Metals, Heavy , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Cadmium , Environmental Monitoring , Geologic Sediments/chemistry , Lead , Mercury/analysis , Metals, Heavy/analysis , Risk Assessment , Water Pollutants, Chemical/analysis
2.
Environ Monit Assess ; 194(5): 356, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35411468

ABSTRACT

Coastal lagoons are important but sensitive environments, being transitional zones between land and sea. The Khnifiss lagoon is the most important desert wetland in Morocco, but little data have been produced concerning heavy metal geochemistry and enrichments in the sediments. Therefore, 26 surface sediments (15 intertidal and 11 subtidal) and 2 sediment cores were collected in 2016 and analyzed for a selection of heavy metals. The data were processed to assess the degree of contamination and the corresponding potential ecological risk, using several accumulation/enrichment indices, and the singular and multi-metal risk indices. Mean concentrations in the bottom layers of the two cores, dating from a pre-industrial age according to geochronological analysis, were used as the local geochemical background. The resulting values were on the whole lower than those reported for other areas of the northeastern coast of Morocco. Multivariate statistics were also applied to better understand relationships among variables (metals and other geochemical parameters) and to reveal similarities among sample groups. The results showed that, although the lagoon is not yet affected by significant anthropogenic influences, small enrichments can be recognized, especially for Ni and Cd. The cause may be related to the proximity to the main national highway, the vehicles and machinery used in the saltworks located in the area, and the small harbors used principally for fishing. In addition, industrial emissions from the Atlantic coast of Morocco and adjacent countries can be reasonably attributed as additional contributors to the enrichments. In terms of potential ecological risk, Cd shows the greatest impact compared to the other metals investigated.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Cadmium/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry , Metals, Heavy/analysis , Morocco , Parks, Recreational , Risk Assessment , Water Pollutants, Chemical/analysis
3.
Environ Monit Assess ; 189(9): 466, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28836031

ABSTRACT

The increasing demand for environmental pollution control results in the development and use of new procedures for the determination of dangerous chemicals. Simple screening methods, which can be used directly in the field for a preliminary assessment of soil contamination, seem to be extremely advantageous. In our laboratory, we developed and optimized a rapid test for a preliminary evaluation of both the concentration and the mobility of some potentially toxic metals in soils. This screening test consists of a single extraction of the soil sample with a buffer solution, followed by the titration of the extracted solution with dithizone to determine the contents of bi-valent heavy metals (such as Pb, Cu, Zn, and Cd). This screening method was then directly applied in the field during the sampling campaign in the framework of an Italian-Serbian collaborative project, finalized in the study of metal availability in soils. The results obtained in the field with the rapid test were compared with those obtained in the laboratory following the conventional procedure commonly used to evaluate metal bioavailability (diethylenetriaminepentaacetic extraction). Moreover, selected samples were analyzed sequentially in the laboratory using the standardized BCR three-step sequential extraction procedure. The screening test gave results conceptually in good agreement with those obtained via the BCR procedure. These preliminary data show that the proposed screening test is a reliable method for the preliminary rapid evaluation of metal total concentrations and of potential metal mobility in soils, supporting sampling activities directly in the field.


Subject(s)
Environmental Monitoring/methods , Metals, Heavy/analysis , Mining , Soil Pollutants/analysis , Soil/chemistry , Biological Availability , Rome , Serbia
SELECTION OF CITATIONS
SEARCH DETAIL