Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 295
Filter
1.
BioDrugs ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39317850

ABSTRACT

BACKGROUND: Nivolumab (Opdivo®) is the first anti-PD-1 antibody approved in the world. LY01015 is a potential biosimilar of nivolumab. OBJECTIVES: This phase I study aimed to establish the pharmacokinetic equivalence between LY01015 and the original investigational nivolumab (Opdivo®) in healthy Chinese male subjects. Additionally, safety and immunogenicity were assessed. PATIENTS AND METHODS: A randomized, double-blind, parallel-controlled, phase I trial was conducted with 176 healthy male adults receiving a single intravenous infusion of LY01015 or nivolumab at 0.3 mg/kg. Pharmacokinetics, safety, and immunogenicity were evaluated over a 99-day period. The primary pharmacokinetics endpoint was AUC0-∞, and the secondary pharmacokinetic endpoints included AUC0-t and Cmax. Pharmacokinetic bioequivalence was confirmed using standard equivalence margins of 80.00-125.00%. RESULTS: This study is the first to report on the pharmacokinetics, safety, and immunogenicity of Opdivo® in healthy individuals. The pharmacokinetics profiles of LY01015 and Opdivo® were found to be comparable. The geometric mean ratios (90% confidence intervals) for the AUC0-∞, AUC0-t, and Cmax of LY01015 to Opdivo® were 94.49% (90.29-98.88%), 94.92% (88.73-101.54%), and 96.55% (93.32-99.90%), respectively, falling within the conventional bioequivalence criteria of 80.00-125.00%. The safety and immunogenicity were also comparable between the two groups. CONCLUSIONS: LY01015 demonstrated highly similar pharmacokinetics to nivolumab in healthy Chinese male subjects. Both drugs exhibited comparable safety and immunogenicity profiles. TRIAL REGISTRATION: This trial is registered at the Chinese Clinical Trial Registry website ( https://www.chictr.org.cn/ #ChiCTR2200064771).

2.
Brain Behav Immun ; 123: 334-352, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39322089

ABSTRACT

BACKGROUND: The perioperative use of remifentanil is associated with postoperative hyperalgesia, which can impair recovery and extend hospitalization. Recent studies have revealed that microglia-mediated activation of the NLRP3 inflammasome plays a critical role in opioid-induced hyperalgesia, with NF-κB acting as a pivotal activation point for NLRP3. Despite these findings, the specific molecular mechanisms underlying remifentanil-induced postoperative hyperalgesia remain unclear. This study aims to develop a model of remifentanil-induced hyperalgesia and investigate the molecular mechanisms, focusing on the NF-κB/NLRP3 pathway, using both in vitro and in vivo approaches. METHOD: We established a remifentanil-induced hyperalgesia model and performed proteomic analysis to identify differential protein expression in the spinal cord tissue of rats. NLRP3 or PAK4 antagonists were administered intrathecally in vivo, and mechanical pain thresholds in the hind paws were measured using Von Frey testing. In vitro, we applied NLRP3 or PAK4 inhibitors or used lentivirus infection to silence PAK4, NF-κB, and NLRP3 genes. Protein expression was assessed through immunohistochemistry, immunofluorescence, and Western blotting. Additionally, ELISA was performed to measure IL-1ß and IL-18 levels, and RT-qPCR was conducted to evaluate the transcription of target genes. RESULTS: Proteomic analysis revealed that remifentanil upregulates PAK4 protein in spinal cord tissue two hours after the surgery. In addition, remifentanil induces morphological changes in the spinal cord dorsal horn, characterized by increased expression of PAK4, p-p65, NLRP3 and Iba-1 proteins, which in turn leads to elevated IL-1ß and IL-18 levels and an inflammatory response. Intrathecal injection of NLRP3 or PAK4 inhibitors mitigates remifentanil-induced hyperalgesia and associated changes. In vitro, downregulation of PAK4 inhibits the increase in PAK4, p-p65, NLRP3 and Caspase-1 induced by LPS. Conversely, the downregulation of NLRP3 does not impact the levels of PAK4 and p-p65 proteins, aligning with the in vivo results and suggesting that PAK4 acts as an upstream signaling molecule of NLRP3. CONCLUSION: Remifentanil can increase PAK4 expression in spinal cord dorsal horn cells by activating the NF-κB/NLRP3 pathway and mediating microglial activation, thereby contributing to postoperative hyperalgesia.

3.
Heart Rhythm ; 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39284398

ABSTRACT

BACKGROUND: Postmenopausal women with atrial fibrillation (AF) exhibit a higher level of atrial fibrosis and a higher recurrence rate after ablation compared with men. However, the underlying mechanism remains unclear. OBJECTIVE: The purpost of this study was to investigate the mechanism through which menopause promotes atrial fibrosis. METHODS: In a prospective cohort of women with AF, regression analyses were conducted to assess the relationship between low-voltage area (LVA) and sex hormone levels. CREM-IbΔC-X mice, a spontaneous AF model, underwent bilateral ovariectomy (OVX). Electrocardiograms, echocardiograms, and Masson staining were performed. Follicle-stimulating hormone (FSH) stimulation was applied in male mice for 3 months. OVX was also applied in an angiotensin II (Ang II)-induced pressure overload mouse model, after programmed electrical stimulation and structural analyses. Bulk RNA sequencing (RNA-seq) was performed to elucidate potential mechanisms. RESULTS: Women demonstrated a significantly higher LVA burden than men (P < .001). A positive correlation was observed between LVA burden and FSH level (P = .002). Mice in the OVX group exhibited a significantly higher incidence of AF (P = .040) and atrial fibrosis (P = .021) compared with the Sham group, which could be attenuated by AAV-siFshr. In male CREM-IbΔC-X mice, FSH stimulation promoted the occurrence of AF (P = .035) and atrial fibrosis (P = .002). In Ang II-induced female mice, OVX prompted atrial fibrosis, increased AF inducibility, and shortened atrial effective refractory period, which could be attenuated with knockdown of Fshr. RNA-seq indicated mitochondrial dysfunction. CONCLUSION: Postmenopausal women exhibited a higher LVA burden than men, which was positively correlated with FSH level. FSH promoted atrial fibrosis through oxidative stress.

4.
Heart Rhythm ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39271089

ABSTRACT

BACKGROUND: An isolation line placed at the pulmonary vein antrum (PVA) area is superior to ostium level in atrial fibrillation (AF) control. However, less is known about the electrophysiologic characteristics of the PVA. OBJECTIVE: The aim of this study was to describe the electrophysiologic properties of the PVA. METHODS: High-density mapping of the left atrium was performed in 18 paroxysmal AF (PAF) patients and 9 age- and sex-matched paroxysmal supraventricular tachycardia (PSVT) patients. Each PVA was divided into 8 segments, and the pulmonary vein (PV) was divided into 4 segments. The electrophysiologic properties included slow conduction, complex fractionated electrograms, and effective refractory period (ERP). RESULTS: Slow conduction was more prevalent at the PVA (43.2% ± 19.5% vs 14.7% ± 13.0%; P = .001) and PV (61.9% ± 16.4% vs 9.1% ± 9.0%; P < .001) in PAF patients than in PSVT patients during sinus rhythm. Similarly, the area with complex fractionated electrograms was significantly larger at the PVA (133.8 [61.6-233.2] mm2 vs 0.0 [0.0-41.4] mm2; P = .011) in PAF patients during sinus rhythm. The ERP of the PVA was longer in PAF patients than in control at the drive length of 600 ms (260 [230-280] ms vs 220 [190-250] ms; P = .001) and 400 ms (230 [205-250] ms vs 200 [190-220] ms; P = .007). The ERP net difference between the PV and PVA is larger in PAF patients than in control both at 600-ms pacing (40 [20-70] ms vs 10 [10-30] ms; P < .001) and at 400-ms pacing (40 [20-60] ms vs 20 [10-30] ms; P < .001). CONCLUSION: PAF patients have the PVA electrical substrate including slow conduction, complex fractionated electrograms, and ERP dispersion.

5.
J Electrocardiol ; 86: 153766, 2024.
Article in English | MEDLINE | ID: mdl-39197227

ABSTRACT

BACKGROUND: Atrial fibrosis has a significant impact on the success rate of catheter ablation (CA) treatment of atrial fibrillation (AF). The fibrotic tissues could be reflected by the amplitude of the fibrillatory wave (F-wave). METHODS AND RESULTS: 704 patients with persistent AF and at least 1-year follow-up after CA were included as the internal group. 101 patients from another hospital were used as the external validation cohort. A 12­lead ECG was performed before CA and the maximum FWA in three ECG leads (aVL, aVF, V1) were measured. The FWA score (0 to 6 points according to the amplitude range of the three leads) of each patients was calculated. Five models including clinical features, FWA score, CHA2DS2-VASc score, APPLE score and the fusion of clinical features and FWA score were built. The FWA score was superior to the model constructed by clinical variables, CHA2DS2-VASc score and APPLE score. It not only had good predictive performance for AF recurrence, with an AUC value of 0.812 (95% CI 0.724-0.900), but also showed a significant predictive value for the recurrence rate according to F-wave amplitude. In the external validation cohort, the FWA score showed similar results (AUC 0.768, 95% CI 0.672-0.865). CONCLUSIONS: The present study reveals the significant predictive value of the FWA score for persistent AF ablation recurrence.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Electrocardiography , Feasibility Studies , Humans , Atrial Fibrillation/surgery , Atrial Fibrillation/physiopathology , Male , Female , Middle Aged , Treatment Outcome , Predictive Value of Tests , Recurrence , Aged , Heart Atria/physiopathology , Heart Atria/surgery
6.
Viruses ; 16(8)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39205187

ABSTRACT

Astroviruses are single-stranded, positive-sense RNA viruses capable of infecting humans as well as a wide range of mammalian and avian species, with a length of approximately 6.6-7.7 kb. In this study, 139 goat fecal samples collected from the Guangxi province were used for the RT-PCR detection, and two of these were positive for goat astrovirus, with a positivity rate of 1.44% (2/139). The complete genome sequence of an astrovirus strain and the partial genome sequence of a strain astrovirus, named GX WZ 2023 and GX HC 2023, were amplified and sequenced, and their sequence lengths were 6284 nt and 6213 nt, respectively. Among them, the capsid protein of goat astrovirus GX HC 2023 showed the highest amino acid identity of 95.9% with ovine astrovirus GX, which belonged to the MAstV-2 genotype. However, the closest relative of the GX WZ 2023 strain was found to be the caprine astrovirus Sichuan, with a nucleotide sequence identity of 76.8%. The ORF1ab nonstructural protein of this strain showed the highest amino acid identities of 89.2 and 95.8% with the ovine astrovirus S5.1 and caprine astrovirus G5.1 strains, respectively. However, its ORF2 capsid protein has 68.4% amino acid identity with the bovine astrovirus (BAstV) 16 2021 CHN strain and only 21.9-64% amino acid identity with all available strains of goat astrovirus. The GX WZ 2023 strain was recombined with the Chinese (BAstV 16 2021 CHN) and Japanese bovine strains (BAstV JPN 2015) in the ORF2 region. Therefore, the goat astrovirus GX WZ 2023 is proposed as a new member of the family goat astroviridae based on the species classification criteria of the International Committee on Taxonomy of Viruses. These findings enhance our understanding of the prevalence and genetic evolution of goat astrovirus and provide a scientific basis for future studies of these viruses in other animals.


Subject(s)
Astroviridae Infections , Genome, Viral , Genotype , Goat Diseases , Goats , Mamastrovirus , Phylogeny , Animals , Goats/virology , China/epidemiology , Astroviridae Infections/veterinary , Astroviridae Infections/virology , Astroviridae Infections/epidemiology , Goat Diseases/virology , Goat Diseases/epidemiology , Mamastrovirus/genetics , Mamastrovirus/classification , Mamastrovirus/isolation & purification , Feces/virology , Capsid Proteins/genetics , Recombination, Genetic , RNA, Viral/genetics , Astroviridae/genetics , Astroviridae/classification , Astroviridae/isolation & purification , Sheep , Sequence Analysis, DNA
7.
Adv Sci (Weinh) ; 11(32): e2405077, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959393

ABSTRACT

Energy and environmental issues have increasingly garnered significant attention for sustainable development. Flexible and shape-stable phase change materials display great potential in regulation of environmental temperature for energy saving and human comfort. Here, inspired by the water absorption behavior of salt-tolerant animals and plants in salinity environment and the Hofmeister theory, highly stable phase change salogels (PCSGs) are fabricated through in situ polymerization of hydrophilic monomers in molten salt hydrates, which can serve multiple functions including thermal management patches, smart windows, and ice blocking coatings. The gelation principles of the polymer in high ion concentration solution are explored through the density functional theory simulation and verified the feasibility of four types of salt hydrates. The high concentration chaotropic ions strongly interacted with polymer chains and promoted the gelation at low polymer concentrations which derive highly-stable and ultra-moisturizing PCSGs with high latent heat (> 200 J g-1). The synergistic adhesion and transparency switching abilities accompanied with phase transition enable their smart thermal management. The study resolves the melting leakage and thermal cycling stability of salt hydrates, and open an avenue to fabricate flexible PCM of low cost, high latent heat, and long-term durability for energy-saving, ice-blocking, and thermal management.

8.
Nat Commun ; 15(1): 6357, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39069555

ABSTRACT

DNA hydroxymethylation (5hmC), the most abundant oxidative derivative of DNA methylation, is typically enriched at enhancers and gene bodies of transcriptionally active and tissue-specific genes. Although aberrant genomic 5hmC has been implicated in age-related diseases, its functional role in aging remains unknown. Here, using mouse liver and cerebellum as model organs, we show that 5hmC accumulates in gene bodies associated with tissue-specific function and restricts the magnitude of gene expression changes with age. Mechanistically, 5hmC decreases the binding of splicing associated factors and correlates with age-related alternative splicing events. We found that various age-related contexts, such as prolonged quiescence and senescence, drive the accumulation of 5hmC with age. We provide evidence that this age-related transcriptionally restrictive function is conserved in mouse and human tissues. Our findings reveal that 5hmC regulates tissue-specific function and may play a role in longevity.


Subject(s)
5-Methylcytosine , Aging , Cerebellum , DNA Methylation , Liver , Animals , Aging/genetics , Aging/metabolism , 5-Methylcytosine/metabolism , 5-Methylcytosine/analogs & derivatives , Liver/metabolism , Mice , Humans , Cerebellum/metabolism , Mice, Inbred C57BL , Longevity/genetics , Male , Alternative Splicing , Transcription, Genetic , Female , Gene Expression Regulation
9.
Microb Pathog ; 194: 106829, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39084310

ABSTRACT

Goose astroviruses (GAstVs) are important pathogens which can cause gout in goslings leading to huge economic losses for the goose farming industry in China. In 2023, an infectious disease characterized by visceral gout broke out in commercial goose farms in Guangxi and Guangdong provinces of China. In this study, two GAstV strains of GXNN and GDCS were successfully isolated from these two disease-ridden goose farms. The complete genomic lengths of these two strains were 7166 bp, and phylogenetic analysis showed that they were both GAstV-2 subtypes. The 3-dimensional structures of the capsid protein were predicted and six characteristic mutation sites at amino acid positions 60, 61, 228, 229, 456 and 523 were found within the strong antigenic regions. A recombination event occurred at 6833-7070 nt between the GAstV TZ03 and Turkey astrovirus CA/00 and this was detected in both the GXNN and GDCS strains. Another recombinant event occurred at 63-2747 nt between the GAstV XT1 and GAstV SDPY and this was detected in the GDCS strain. When 1-day-old goslings were infected with the novel GXNN and GDCS strains, they showed severe visceral gout. This was accompanied by enlarged spleens, liver hemorrhages and urate deposits in the kidneys and ureters and their blood urea nitrogen levels were significantly elevated. The mortality rates of the GXNN- and GDCS-infected groups were pathogenically high at 80 % and 60 %, respectively. These results will promote our understanding of the evolution and epidemic potential of GAstVs in China.


Subject(s)
Astroviridae Infections , Capsid Proteins , Geese , Genome, Viral , Gout , Phylogeny , Poultry Diseases , Animals , Geese/virology , China , Astroviridae Infections/veterinary , Astroviridae Infections/virology , Poultry Diseases/virology , Poultry Diseases/pathology , Gout/virology , Gout/veterinary , Gout/pathology , Capsid Proteins/genetics , Avastrovirus/genetics , Avastrovirus/pathogenicity , Avastrovirus/isolation & purification , Avastrovirus/classification , Virulence , Astroviridae/genetics , Astroviridae/isolation & purification , Astroviridae/pathogenicity
10.
Front Biosci (Landmark Ed) ; 29(5): 201, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38812314

ABSTRACT

BACKGROUND: Ibrutinib could increase the risk of atrial fibrillation (AF) in chronic lymphocytic leukemia (CLL) patients. However, the precise mechanism underlying ibrutinib-induced AF remains incompletely elucidated. METHODS: We investigated the proportion of ibrutinib-treated CLL patients with new-onset AF. Optical mapping was conducted to reveal the proarrhythmic effect of ibrutinib on HL-1 cells. Fluorescence staining and western blot were used to compare connexins 43 and 40 expression in ibrutinib-treated and control groups. To identify autophagy phenotypes, we used western blot to detect autophagy-related proteins, transmission electron microscopy to picture autophagosomes, and transfected mCherry-GFP-LC3 virus to label autophagosomes and lysosomes. Hydroxychloroquine as an autophagy inhibitor was administered to rescue ibrutinib-induced Cx43 and Cx40 degradation. RESULTS: About 2.67% of patients developed atrial arrhythmias after ibrutinib administration. HL-1 cells treated with ibrutinib exhibited diminished conduction velocity and a higher incidence of reentry-like arrhythmias compared to controls. Cx43 and Cx40 expression reduced along with autophagy markers increased in HL-1 cells treated with ibrutinib. Inhibiting autophagy upregulated Cx43 and Cx40. CONCLUSIONS: The off-target effect of ibrutinib on the PI3K-AKT-mTOR signaling pathway caused connexin degradation and atrial arrhythmia via promoting autophagy. CLINICAL TRIAL REGISTRATION: ChiCTR2100046062, https://clin.larvol.com/trial-detail/ChiCTR2100046062.


Subject(s)
Adenine , Atrial Fibrillation , Autophagy , Connexin 43 , Connexins , Phosphatidylinositol 3-Kinases , Piperidines , Proto-Oncogene Proteins c-akt , Signal Transduction , TOR Serine-Threonine Kinases , Humans , Adenine/analogs & derivatives , Adenine/pharmacology , Adenine/adverse effects , TOR Serine-Threonine Kinases/metabolism , Autophagy/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Piperidines/pharmacology , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Connexin 43/metabolism , Connexin 43/genetics , Female , Atrial Fibrillation/metabolism , Atrial Fibrillation/chemically induced , Connexins/metabolism , Connexins/genetics , Male , Aged , Middle Aged , Gap Junction alpha-5 Protein , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/chemically induced
11.
Aging (Albany NY) ; 16(8): 6717-6730, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38637019

ABSTRACT

Evaporation of sweat on the skin surface is the major mechanism for dissipating heat in humans. The secretory capacity of sweat glands (SWGs) declines during aging, leading to heat intolerance in the elderly, but the mechanisms responsible for this decline are poorly understood. We investigated the molecular changes accompanying SWG aging in mice, where sweat tests confirmed a significant reduction of active SWGs in old mice relative to young mice. We first identified SWG-enriched mRNAs by comparing the skin transcriptome of Eda mutant Tabby male mice, which lack SWGs, with that of wild-type control mice by RNA-sequencing analysis. This comparison revealed 171 mRNAs enriched in SWGs, including 47 mRNAs encoding 'core secretory' proteins such as transcription factors, ion channels, ion transporters, and trans-synaptic signaling proteins. Among these, 28 SWG-enriched mRNAs showed significantly altered abundance in the aged male footpad skin, and 11 of them, including Foxa1, Best2, Chrm3, and Foxc1 mRNAs, were found in the 'core secretory' category. Consistent with the changes in mRNA expression levels, immunohistology revealed that higher numbers of secretory cells from old SWGs express the transcription factor FOXC1, the protein product of Foxc1 mRNA. In sum, our study identified mRNAs enriched in SWGs, including those that encode core secretory proteins, and altered abundance of these mRNAs and proteins with aging in mouse SWGs.


Subject(s)
Aging , Sweat Glands , Animals , Sweat Glands/metabolism , Mice , Aging/genetics , Aging/metabolism , Male , RNA, Messenger/metabolism , RNA, Messenger/genetics , Transcriptome
12.
Int J Med Sci ; 21(5): 965-977, 2024.
Article in English | MEDLINE | ID: mdl-38616996

ABSTRACT

Cardiac hypertrophy is the most prevalent compensatory heart disease that ultimately leads to spontaneous heart failure. Mounting evidence suggests that microRNAs (miRs) and endogenous hydrogen sulfide (H2S) play a crucial role in the regulation of cardiac hypertrophy. In this study, we aimed to investigate whether inhibition of miR-27a could protect against cardiac hypertrophy by modulating H2S signaling. We established a model of cardiac hypertrophy by obtaining hypertrophic tissue from mice subjected to transverse aortic constriction (TAC) and from cells treated with angiotensin-II. Molecular alterations in the myocardium were quantified using quantitative real time PCR (qRT-PCR), Western blotting, and ELISA. Morphological changes were characterized by hematoxylin and eosin (HE) staining and Masson's trichrome staining. Functional myocardial changes were assessed using echocardiography. Our results demonstrated that miR-27a levels were elevated, while H2S levels were reduced in TAC mice and myocardial hypertrophy. Further luciferase and target scan assays confirmed that cystathionine-γ-lyase (CSE) was a direct target of miR-27a and was negatively regulated by it. Notably, enhancement of H2S expression in the heart was observed in mice injected with recombinant adeno-associated virus vector 9 (rAAV9)-anti-miR-27a and in cells transfected with a miR-27a inhibitor during cardiac hypertrophy. However, this effect was abolished by co-transfection with CSE siRNA and the miR-27a inhibitor. Conversely, injecting rAAV9-miR-27a yielded opposite results. Interestingly, our findings demonstrated that glucagon-like peptide-1 (GLP-1) agonists could mitigate myocardial damage by down-regulating miR-27a and up-regulating CSE. In summary, our study suggests that inhibition of miR-27a holds therapeutic promise for the treatment of cardiac hypertrophy by increasing H2S levels. Furthermore, our findings unveil a novel mechanism of GLP-1 agonists involving the miR-27a/H2S pathway in the management of cardiac hypertrophy.


Subject(s)
Aortic Valve Stenosis , Heart Failure , MicroRNAs , Animals , Mice , Cardiomegaly/genetics , Glucagon-Like Peptide 1 , MicroRNAs/genetics , Cystathionine gamma-Lyase
13.
ACS Nano ; 18(14): 10216-10229, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38436241

ABSTRACT

Substantial advancements have been achieved in the realm of cardiac tissue repair utilizing functional hydrogel materials. Additionally, drug-loaded hydrogels have emerged as a research hotspot for modulating adverse microenvironments and preventing left ventricular remodeling after myocardial infarction (MI), thereby fostering improved reparative outcomes. In this study, diacrylated Pluronic F127 micelles were used as macro-cross-linkers for the hydrogel, and the hydrophobic drug α-tocopherol (α-TOH) was loaded. Through the in situ synthesis of polydopamine (PDA) and the incorporation of conductive components, an injectable and highly compliant antioxidant/conductive composite FPDA hydrogel was constructed. The hydrogel exhibited exceptional stretchability, high toughness, good conductivity, cell affinity, and tissue adhesion. In a rabbit model, the material was surgically implanted onto the myocardial tissue, subsequent to the ligation of the left anterior descending coronary artery. Four weeks postimplantation, there was discernible functional recovery, manifesting as augmented fractional shortening and ejection fraction, alongside reduced infarcted areas. The findings of this investigation underscore the substantial utility of FPDA hydrogels given their proactive capacity to modulate the post-MI infarct microenvironment and thereby enhance the therapeutic outcomes of myocardial infarction.


Subject(s)
Hydrogels , Myocardial Infarction , Animals , Rabbits , Hydrogels/therapeutic use , alpha-Tocopherol/therapeutic use , Myocardial Infarction/therapy , Myocardium , Ventricular Remodeling
14.
Heart Rhythm ; 21(7): 1001-1007, 2024 07.
Article in English | MEDLINE | ID: mdl-38365127

ABSTRACT

BACKGROUND: Female sex has long been recognized to present a higher risk of stroke and atrial fibrillation (AF) recurrence after circumferential pulmonary vein isolation (CPVI) than in males. However, the underlying mechanisms and benefits of additional low-voltage area (LVA) modification in women remain unknown. OBJECTIVE: The purpose of this study was to investigate differences in atrial substrate and efficacy of additive LVA ablation between sex subgroups. METHODS: Patients with paroxysmal atrial fibrillation (PAF) aged 65-80 years were randomly assigned to either CPVI plus LVA modification (STABLE-SR) group or CPVI alone group. The primary outcome was freedom from atrial arrhythmias after a single ablation procedure. RESULTS: Of 414 patients included in STABLE-SR-III, 204 (49.3%) were women (mean age 70.5 ± 4.7 years). Women demonstrated significantly higher LVA prevalence (51.5% vs 32.9%; P <.001) and LVA burden (6.5% vs 2.9%; P <.001) than men. In the STABLE-SR group, additional LVA ablation was associated with a 63% reduction in recurrence for women compared with the CPVI alone group (10.8% vs 29.4%; adjusted hazard ratio 0.37; 95% confidence interval 0.18-0.75; P for interaction = .040). However, this finding was not observed in men (18.7% vs 18.5%). In the female subgroup, both group 1 (CPVI + LVA modification) and group 3 (CPVI alone in females without LVA) had similar clinical outcomes, which were much better than in Group 2 (CPVI alone in women with LVA) (90% vs 83.8% vs 63.6%; P = .003). CONCLUSION: In older patients with PAF, women demonstrated more advanced atrial substrate, including higher prevalence and burden of LVA compared with men. Women may receive greater benefit from additional LVA modification than men.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Heart Atria , Pulmonary Veins , Humans , Female , Aged , Atrial Fibrillation/surgery , Atrial Fibrillation/epidemiology , Atrial Fibrillation/physiopathology , Male , Catheter Ablation/methods , Heart Atria/physiopathology , Prevalence , Pulmonary Veins/surgery , Sex Factors , Aged, 80 and over , Cicatrix/etiology , Cicatrix/epidemiology , Recurrence , Treatment Outcome , Follow-Up Studies
15.
IEEE J Biomed Health Inform ; 28(5): 3090-3101, 2024 May.
Article in English | MEDLINE | ID: mdl-38319782

ABSTRACT

Survival analysis is employed to analyze the time before the event of interest occurs, which is broadly applied in many fields. The existence of censored data with incomplete supervision information about survival outcomes is one key challenge in survival analysis tasks. Although some progress has been made on this issue recently, the present methods generally treat the instances as separate ones while ignoring their potential correlations, thus rendering unsatisfactory performance. In this study, we propose a novel Deep Survival Analysis model with latent Clustering and Contrastive learning (DSACC). Specifically, we jointly optimize representation learning, latent clustering and survival prediction in a unified framework. In this way, the clusters distribution structure in latent representation space is revealed, and meanwhile the structure of the clusters is well incorporated to improve the ability of survival prediction. Besides, by virtue of the learned clusters, we further propose a contrastive loss function, where the uncensored data in each cluster are set as anchors, and the censored data are treated as positive/negative sample pairs according to whether they belong to the same cluster or not. This design enables the censored data to make full use of the supervision information of the uncensored samples. Through extensive experiments on four popular clinical datasets, we demonstrate that our proposed DSACC achieves advanced performance in terms of both C-index (0.6722, 0.6793, 0.6350, and 0.7943) and Integrated Brier Score (IBS) (0.1616, 0.1826, 0.2028, and 0.1120).


Subject(s)
Deep Learning , Latent Class Analysis , Survival Analysis , Female , Humans , Male , Age Factors , Blood Pressure , Body Temperature , Comorbidity , Creatine/blood , Datasets as Topic , Dementia , Diabetes Mellitus , Heart Rate , Leukocyte Count , Neoplasms , Racial Groups , Respiratory Rate , Sodium/blood , Temperature
16.
ACS Nano ; 18(10): 7532-7545, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38412072

ABSTRACT

Ti3C2Tx MXene often suffers from poor lithium storage behaviors due to its electrochemically unfavorable OH terminations. Herein, we propose molecular-level interfacial chemistry regulation of Ti3C2Tx MXene with phytic acid (PA) to directly activate its OH terminations. Through constructing hydrogen bonds (H-bonds) between oxygen atoms of PA and OH terminations on Ti3C2Tx surface, interfacial charge distribution of Ti3C2Tx has been effectively regulated, thereby enabling sufficient ion-storage sites and expediting ion transport kinetics for high-performance energy storage. The results show that Li ions preferably bind to H-bond acceptors (oxygen atoms from PA), and the flexibility of H-bonds therefore renders their interactions with adsorbed Li ions chemically "tunable", thus alleviating undesirable localized geometric changes of the OH terminations. Meanwhile the H-bond-induced microscopic dipoles can act as directional Li-ion pumps to expedite ion diffusion kinetics with lower energy barrier. As a result, the as-designed Ti3C2Tx/PA achieves a 2.4-fold capacity enhancement compared with pristine Ti3C2Tx (even beyond theoretical capacity), superior long-term cyclability (220.0 mAh g-1 after 2000 cycles at 2.0 A g-1), and broad temperature adaptability (-20 to 50 °C). This work offers a promising interface engineering strategy to regulate microenvironments of inherent terminations for breaking through the energy storage performance of MXenes.

17.
J Anim Sci Biotechnol ; 15(1): 4, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38238856

ABSTRACT

BACKGROUND: The benefits of combining benzoic acid and essential oils (BAO) to mitigate intestinal impairment during the weaning process have been well established, while the detailed underlying mechanism has not been fully elucidated. Previous research has primarily focused on the reparative effects of BAO on intestinal injury, while neglecting its potential in enhancing intestinal stress resistance. METHODS: In this study, we investigated the pre-protective effect of BAO against LPS-induced stress using a modified experimental procedure. Piglets were pre-supplemented with BAO for 14 d, followed by a challenge with LPS or saline to collect blood and intestinal samples. RESULTS: Our findings demonstrated that BAO supplementation led to significant improvements in piglets' final weight, average daily gain, and feed intake/body gain ratio. Additionally, BAO supplementation positively influenced the composition of intestinal microbiota, increasing beneficial Actinobacteriota and Alloprevotella while reducing harmful Desulfobacterota, Prevotella and Oscillospira. Furthermore, BAO supplementation effectively mitigated oxidative disturbances and inflammatory responses induced by acute LPS challenge. This was evidenced by elevated levels of T-AOC, SOD, and GSH, as well as decreased levels of MDA, TNF-α, and IL-6 in the plasma. Moreover, piglets subjected to LPS challenge and pre-supplemented with BAO exhibited significant improvements in intestinal morphological structure and enhanced integrity, as indicated by restored expression levels of Occludin and Claudin-1 compared to the non-supplemented counterparts. Further analysis revealed that BAO supplementation enhanced the jejunal antioxidative capacity by increasing GSH-Px levels and decreasing MDA levels under the LPS challenge and stimulated the activation of the Nrf2 signaling pathway. Additionally, the reduction of TLR4/NF-κB/MAPK signaling pathways activation and proinflammatory factor were also observed in the jejunal of those piglets fed with BAO. CONCLUSIONS: In summary, our study demonstrates that pre-supplementation of BAO enhances the anti-stress capacity of weaned piglets by improving intestinal microbiota composition, reinforcing the intestinal barrier, and enhancing antioxidative and anti-inflammatory capabilities. These effects are closely associated with the activation of Nrf2 and TLR4/NF-κB/MAPK signaling pathways.

18.
ACS Nano ; 18(2): 1702-1713, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38165231

ABSTRACT

Implantable neuroelectronic interfaces have gained significant importance in long-term brain-computer interfacing and neuroscience therapy. However, due to the mechanical and geometrical mismatches between the electrode-nerve interfaces, personalized and compatible neural interfaces remain serious issues for peripheral neuromodulation. This study introduces the stretchable and flexible electronics class as a self-rolled neural interface for neurological diagnosis and modulation. These stretchable electronics are made from liquid metal-polymer conductors with a high resolution of 30 µm using microfluidic printing technology. They exhibit high conformability and stretchability (over 600% strain) during body movements and have good biocompatibility during long-term implantation (over 8 weeks). These stretchable electronics offer real-time monitoring of epileptiform activities with excellent conformability to soft brain tissue. The study also develops self-rolled microfluidic electrodes that tightly wind the deforming nerves with minimal constraint (160 µm in diameter). The in vivo signal recording of the vagus and sciatic nerve demonstrates the potential of self-rolled cuff electrodes for sciatic and vagus neural modulation by recording action potential and reducing heart rate. The findings of this study suggest that the robust, easy-to-use self-rolled microfluidic electrodes may provide useful tools for compatible neuroelectronics and neural modulation.


Subject(s)
Microfluidics , Sciatic Nerve , Electrodes , Electronics , Brain
19.
Transl Res ; 267: 54-66, 2024 May.
Article in English | MEDLINE | ID: mdl-38199433

ABSTRACT

Atrial cardiomyopathy (ACM) forms the substrate for atrial fibrillation (AF) and underlies the potential for atrial thrombus formation and subsequent stroke. However, generating stable animal models that accurately replicate the entire progression of atrial lesions, particularly the onset of AF, presents significant challenges. In the present study, we found that the isoform of CRE-binding protein modulator (CREM-IbΔC-X), which is involved in the regulation of cardiac development and atrial rhythm, was highly expressed in atrial biopsies from patients with AF. Building upon this finding, we employed CRISPR/Cas9 technology to create a mouse model with cardiac-specific overexpression of CREM-IbΔC-X (referred to as CS-CREM mice). This animal model effectively illustrated the development of ACM through electrophysiological and structural remodelings over time. Proteomics and Chip-qPCR analysis of atrial samples revealed significant upregulation of cell-matrix adhesion and extracellular matrix structural components, alongside significant downregulation of genes related to atrial functions in the CS-CREM mice. Furthermore, the corresponding responses to anti-arrhythmia drugs, i.e., amiodarone and propafenone, suggested that CS-CREM mice could serve as an ideal in vivo model for drug testing. Our study introduced a novel ACM model with spontaneous AF by cardiac-specifically overexpressing CREM-IbΔC-X in mice, providing valuable insights into the mechanisms and therapeutic targets of ACM.


Subject(s)
Atrial Fibrillation , Cardiomyopathies , Mice , Humans , Animals , CRISPR-Cas Systems/genetics , Mice, Transgenic , Heart Atria/pathology , Cardiomyopathies/genetics , Cyclic AMP Response Element Modulator/genetics , Cyclic AMP Response Element Modulator/metabolism
20.
Acta Pharmacol Sin ; 45(1): 76-86, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37670136

ABSTRACT

Mechanosensitive cation channels such as Piezo1 and Piezo2 are activated by mechanical force like a starched wall of the aorta while blood pressure (BP) rising, which helps to elucidate the underlying mechanism of mechanotransduction of baroreceptor endings. In this study we investigated how Piezo1 channel activation-mediated gender- and afferent-specific BP regulation in rats. We established high-fat diet and fructose drink-induced hypertension model rats (HFD-HTN) and deoxycorticosterone (DOCA)-sensitive hypertension model rats. We showed that the expression levels of Piezo1 and Piezo2 were significantly up-regulated in left ventricle of HFD and DOCA hypertensive rats, whereas the down-regulation of Piezo1 was likely to be compensated by Piezo2 up-regulation in the aorta. Likewise, down-regulated Piezo1 was observed in the nodose ganglion (NG), while up-regulated Piezo2 was found in the nucleus tractus solitarius (NTS), which might synergistically reduce the excitatory neurotransmitter release from the presynaptic membrane. Notably, microinjection of Yoda1 (0.025-2.5 mg/ml) into the NG concentration-dependently reduced BP in both hypertensive rat models as well as in control rats with similar EC50; the effect of Yoda1 was abolished by microinjection of a Piezo1 antagonist GsMTx4 (1.0 µM). Functional analysis in an in vitro aortic arch preparation showed that instantaneous firing frequency of single Ah-fiber of aortic depressor nerve was dramatically increased by Yoda1 (0.03-1.0 µM) and blocked by GsMTx4 (1.0 µM). Moreover, spontaneous synaptic currents recorded from identified 2nd-order Ah-type baroreceptive neurons in the NTS was also facilitated over 100% by Yoda1 (1.0 µM) and completely blocked by GsMTx4 (3.0 µM). These results demonstrate that Piezo1 expressed on Ah-type baroreceptor and baroreceptive neurons in the NG and NTS plays a key role in a sexual-dimorphic BP regulation under physiological and hypertensive condition through facilitation of baroreflex afferent neurotransmission, which is presumably collaborated by Piezo2 expression at different level of baroreflex afferent pathway via compensatory and synergistic mechanisms.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Rats , Animals , Baroreflex , Blood Pressure , Mechanotransduction, Cellular/physiology , Desoxycorticosterone Acetate/pharmacology , Synaptic Transmission
SELECTION OF CITATIONS
SEARCH DETAIL