Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Psychogeriatrics ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39210676

ABSTRACT

BACKGROUND: Patients with Parkinson's disease (PD) suffer from serious quality of life problems. Diabetes has been demonstrated as an independent risk element for PD, aggravating its severity and accelerating its progression. There are currently no suitable biomarkers to reveal the impact of diabetes on PD. The purpose of our research was to study the impact of diabetes on PD using corneal confocal microscopy (CCM), a non-invasive and objective test. METHODS: Fourteen PD patients with diabetes (PD-DM), 60 PD patients without diabetes (PD-NDM), and 30 healthy controls (HC) were included in the study. The clinical symptoms of patients with PD were assessed using the Unified Parkinson's Disease Rating Scale-3 (UPDRS-3) and the Parkinson's Disease Autonomic Symptom Prognosis Scale (SCOPA-AUT). Participants underwent CCM to quantify the corneal nerve fibres. RESULTS: Corneal nerve fibre density (CNFD) and corneal nerve fibre length (CNFL) in patients with PD were lower than HC. Furthermore, CNFD in PD-DM was lower than in PD-NDM (P < 0.01). We also assessed the relationship between CCM parameters and clinical scores. CNFL and Hamilton anxiety (HAMA) have a negative correlation (r = -0.261, P = 0.032), but this study did not observe a significant correlation between CCM parameters and SCOPA-AUT. Additionally, CNFD could distinguish PD-DM from PD-NDM, achieving an area under the curve of 75.06% (95% CI, 61.76%-88.36%). CONCLUSIONS: The CCM could be served as an objective and sensitive biomarker to investigate the impact of diabetes in PD.

2.
J Alzheimers Dis ; 101(1): 159-173, 2024.
Article in English | MEDLINE | ID: mdl-39177602

ABSTRACT

Background: Mild cognitive impairment (MCI) is a heterogeneous condition that can precede various forms of dementia, including Alzheimer's disease (AD). Identifying MCI subjects who are at high risk of progressing to AD is of major clinical relevance. Enlarged perivascular spaces (EPVS) on MRI are linked to cognitive decline, but their predictive value for MCI to AD progression is unclear. Objective: This study aims to assess the predictive value of EPVS for MCI to AD progression and develop a predictive model combining EPVS grading with clinical and laboratory data to estimate conversion risk. Methods: We analyzed 358 patients with MCI from the ADNI database, consisting of 177 MCI-AD converters and 181 non-converters. The data collected included demographic information, imaging data (including perivascular spaces grade), clinical assessments, and laboratory test results. Variable selection was conducted using the Least Absolute Shrinkage and Selection Operator (LASSO) method, followed by logistic regression to develop predictive model. Results: In the univariate logistic regression analysis, both moderate (OR = 5.54, 95% CI [3.04-10.18]) and severe (OR = 25.04, 95% CI [10.07-62.23]) enlargements of the centrum semiovale perivascular space (CSO-PVS) were found to be strong predictors of disease progression. LASSO analyses yielded 12 variables, refined to six in the final model: APOE4 genotype, ADAS11 score, CSO-PVS grade, and volumes of entorhinal, fusiform, and midtemporal regions, with an AUC of 0.956 in the training and 0.912 in the validation cohort. Conclusions: Our predictive model, emphasizing EPVS assessment, provides clinicians with a practical tool for early detection and management of AD risk in MCI patients.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Disease Progression , Glymphatic System , Magnetic Resonance Imaging , Humans , Cognitive Dysfunction/diagnostic imaging , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Female , Male , Aged , Glymphatic System/diagnostic imaging , Glymphatic System/pathology , Predictive Value of Tests , Aged, 80 and over
3.
Brain ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167540

ABSTRACT

The expansion of GGC repeats within NOTCH2NLC leads to the translation of the uN2CpolyG protein, the primary pathogenic factor in neuronal intranuclear inclusion disease (NIID). This study aims to explore the deposition of uN2CpolyG as an amyloid in the vessel wall, leading to uN2CpolyG cerebral amyloid angiopathy (CAA)-related cerebral microbleeds (CMBs). A total of 97 patients with genetically confirmed NIID were enrolled in this study. We analyzed the presence of CMBs using susceptibility-weighted imaging sequences and compared general clinical information, cerebrovascular risk factors, stroke history, antiplatelet medication use, and MRI features between NIID patients with and without CMBs. We further performed hematoxylin and eosin (H&E), Perl's, Congo red, and Thioflavin S staining, ubiquitin, p62 and uN2CpolyG immunostaining on brain tissue obtained from four NIID patients. A total of 354 CMBs were detected among 41 patients with NIID, with nearly half located in the deep brain, one-third in the lobes, and approximately 20% in the infratentorial area. No significant differences in cerebrovascular disease risk factors or history of antiplatelet drug use were observed between patients with and without CMBs. However, patients with CMBs suffered a higher incidence of previous ischemic and hemorrhagic stroke events. This group also had a higher incidence of recent subcortical infarcts and a higher proportion of white matter lesions in the external capsule and temporal pole. Conversely, patients without CMBs showed higher detection of high signals at the corticomedullary junction on diffusion-weighted imaging and more pronounced brain atrophy. H&E staining showed blood vessel leakage and hemosiderin-laden macrophage clusters, and Prussian blue staining revealed brain tissue iron deposition. CMBs occurred more frequently in small vessels lacking intranuclear inclusions, and extensive degeneration of endothelial cells and smooth muscle fibres was observed mainly in vessels lacking inclusions. Congo red-positive amyloid deposition was observed in the cerebral vessels of NIID patients, with disordered filamentous fibres appearing under an electron microscope. Additionally, the co-localization of Thioflavin S-labeled amyloid and uN2CpolyG protein in the cerebral vascular walls of NIID patients further suggested that uN2CpolyG is the main pathogenic protein in this form of amyloid angiopathy. In conclusion, we reviewed patients with GGC repeat expansion of NOTCH2NLC from a novel perspective, providing initial clinical, neuroimaging, and pathological evidence suggesting that uN2CpolyG may contribute to a distinct type of CAA.

4.
Front Microbiol ; 15: 1413218, 2024.
Article in English | MEDLINE | ID: mdl-39144232

ABSTRACT

Objectives: The objective of this study is to investigate the indirect causalities between gut microbiota and sleep disorders. Methods: In stage 1, we utilized 196 gut microbiota as the exposure factor and conducted a two-sample univariable Mendelian randomization (MR) analysis on five sleep disorders: insomnia, excessive daytime sleepiness (EDS), sleep-wake rhythm disorders (SWRD), obstructive sleep apnea (OSA), and isolated REM sleep behavior disorder (iRBD). In stage 2, we validated the MR findings by comparing fecal microbiota abundance between patients and healthy controls through 16S rDNA sequencing. In stage 3, we explored the indirect pathways by which the microbiota affects sleep, using 205 gut microbiota metabolic pathways and 9 common risk factors for sleep disorders as candidate mediators in a network MR analysis. Results: In stage 1, the univariable MR analysis identified 14 microbiota potentially influencing five different sleep disorders. In stage 2, the results from our observational study validated four of these associations. In stage 3, the network MR analysis revealed that the Negativicutes class and Selenomonadales order might worsen insomnia by increasing pain [mediation: 12.43% (95% CI: 0.47, 24.39%)]. Oxalobacter could raise EDS by disrupting adenosine reuptake [25.39% (1.84, 48.95%)]. Allisonella may elevate OSA risk via obesity promotion [36.88% (17.23, 56.54%)], while the Eubacterium xylanophilum group may lower OSA risk by decreasing smoking behavior [7.70% (0.66, 14.74%)]. Conclusion: Triangulation of evidence from the MR and observational study revealed indirect causal relationships between the microbiota and sleep disorders, offering fresh perspectives on how gut microbiota modulate sleep.

5.
J Integr Med ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39060125

ABSTRACT

BACKGROUND: Patients with Parkinson's disease (PD) undergoing long-term levodopa therapy are prone to develop levodopa-induced dyskinesia (LID). Amantadine is the main drug recommended for the treatment of LID by current guidelines, but it is far from meeting clinical needs. Tianqi Pingchan Granule (TPG), a compound Chinese herbal medicine, has been developed to relieve symptom of LID. OBJECTIVE: This randomized controlled trial evaluated the efficacy and safety of the combination of TPG and amantadine for LID. DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS: This is a randomized double-blind placebo-controlled trial, conducted from January 2020 to August 2021 at 6 sites in Jiangsu, Zhejiang and Shanghai, China. One hundred PD patients with ≥ 0.5 h of LID were randomly assigned to either the TPG plus amantadine group (TPG group) or the placebo plus amantadine group (placebo group), and treated for a period of 12 weeks. To ensure unbiased results, all study participants, investigators and sponsors were unaware of group allocations. Additionally, the data analysts remained blinded until the analysis was finalized. MAIN OUTCOME MEASURES: The primary outcome was assessed using the Unified Dyskinesia Rating Scale (UDysRS) (Range 0-104). The key secondary end point was improvement of motor and non-motor symptoms. Safety analyses included all enrolled patients. RESULTS: One hundred patients were enrolled and randomized into the two treatment groups. The changes in UDysRS at week 12 were -11.02 for the TPG group and -4.19 for the placebo group (treatment difference -6.83 [-10.53 to -3.12]; P = 0.0004). Adverse events were reported for 2 of 50 patients (4.0%) in each of the groups. CONCLUSION: This study indicated that a 12-week treatment of amantadine plus TPG effectively reduced UDysRS scores and was well tolerated, demonstrating the efficacy and safety of TPG for the treatment of LID in PD. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT04173832. PLEASE CITE THIS ARTICLE AS: Zhang Y, Zhu XB, Zhao Y, Cui GY, Li WT, Yuan CX, Huang JP, Wan Y, Wu N, Song L, Zhao JH, Liang Y, Xu CY, Liu MJ, Gao C, Chen XX, Liu ZG. Efficacy and safety of Tianqi Pingchan Granule, a compound Chinese herbal medicine, for levodopa-induced dyskinesia in Parkinson's disease: A randomized double-blind placebo-controlled trial. J Integr Med. 2024; Epub ahead of print.

6.
Sleep Med ; 121: 102-110, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38959716

ABSTRACT

OBJECTIVES: To explore the causal relationships between sex hormone levels and incidence of isolated REM sleep behavior disorder (iRBD). METHODS: In our study, we utilized Genome-Wide Association Studies (GWAS) data for iRBD, including 9447 samples with 1061 cases of iRBD provided by the International RBD Study Group. Initially, we conducted a two-sample univariate MR analysis to explore the impact of sex hormone-related indicators on iRBD. This was followed by the application of multivariable MR methods to adjust for other hormone levels and potential confounders. Finally, we undertook a network MR analysis, employing brain structure Magnetic Resonance Imaging (MRI) characteristics as potential mediators, to examine whether sex hormones could indirectly influence the incidence of iRBD by affecting brain structure. RESULTS: Bioavailable testosterone (BioT) is an independent risk factor for iRBD (Odds Ratio [95 % Confidence Interval] = 2.437 [1.308, 4.539], P = 0.005, corrected-P = 0.020), a finding that remained consistent even after adjusting for other sex hormone levels and potential confounders. Additionally, BioT appears to indirectly increase the risk of iRBD by reducing axial diffusivity and increasing the orientation dispersion index in the left cingulum and cingulate gyrus. CONCLUSIONS: Our research reveals that elevated levels of BioT contribute to the development of iRBD. However, the specific impact of BioT on different sexes remains unclear. Furthermore, high BioT may indirectly lead to iRBD by impairing normal pathways in the left cingulum and cingulate gyrus and fostering abnormal pathway formation.


Subject(s)
Genome-Wide Association Study , Magnetic Resonance Imaging , Mendelian Randomization Analysis , REM Sleep Behavior Disorder , Testosterone , Humans , Testosterone/blood , REM Sleep Behavior Disorder/genetics , Male , Female , Incidence , Risk Factors , Middle Aged , Brain/diagnostic imaging , Aged
7.
J Alzheimers Dis ; 99(3): 911-925, 2024.
Article in English | MEDLINE | ID: mdl-38728187

ABSTRACT

Background: Neuroinflammation plays a crucial part in the initial onset and progression of Alzheimer's disease (AD). NLRP3 inflammasome was demonstrated to get involved in amyloid-ß (Aß)-induced neuroinflammation. However, the mechanism of Aß-triggered activation of NLRP3 inflammasome remains poorly understood. Objective: Based on our previous data, the study aimed to identify the downstream signals that bridge the activation of TLR4 and NLRP3 inflammasome associated with Aß. Methods: BV-2 cells were transfected with TLR4siRNA or pretreated with a CLI-095 or NSC23766, followed by Aß1-42 treatment. APP/PS1 mice were injected intraperitoneally with CLI-095 or NSC23766. NLRP3 inflammasome and microglia activation was detected with immunostaining and western blot. G-LISA and Rac1 pull-down activation test were performed to investigate the activation of Rac1. Real-time PCR and ELISA were used to detect the inflammatory cytokines. Aß plaques were assessed by western blotting and immunofluorescence staining. Morris water maze test was conducted to determine the spatial memory in mice. Results: Rac1 and NLRP3 inflammasome were activated by Aß in both in vitro and in vivo experiments. Inhibition of TLR4 reduced the activity of Rac1 and NLRP3 inflammasome induced by Aß1-42. Furthermore, inhibition of Rac1 blocked NLRP3 inflammasome activation mediated by TLR4. Blocking the pathway by CLI095 or NSC23766 suppressed Aß1-42-triggered activation of microglia, reduced the expression of pro-inflammatory mediators and ameliorated the cognition deficits in APP/PS1 mice. Conclusions: Our study demonstrated that TLR4/Rac1/NLRP3 pathway mediated Aß-induced neuroinflammation, which unveiled a novel pathway and key contributors underlying the pathogenic mechanism of Aß.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Mice, Transgenic , NLR Family, Pyrin Domain-Containing 3 Protein , Neuroinflammatory Diseases , Toll-Like Receptor 4 , rac1 GTP-Binding Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Amyloid beta-Peptides/metabolism , Toll-Like Receptor 4/metabolism , Alzheimer Disease/metabolism , Mice , rac1 GTP-Binding Protein/metabolism , Neuroinflammatory Diseases/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Microglia/metabolism , Microglia/drug effects , Inflammasomes/metabolism , Male , Peptide Fragments/toxicity , Mice, Inbred C57BL , Disease Models, Animal , Neuropeptides
8.
Sci Adv ; 10(20): eadl6442, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38748787

ABSTRACT

Early and precise diagnosis of α-synucleinopathies is challenging but critical. In this study, we developed a molecular beacon-based assay to evaluate microRNA-containing extracellular vesicles (EVs) in plasma. We recruited 1203 participants including healthy controls (HCs) and patients with isolated REM sleep behavior disorder (iRBD), α-synucleinopathies, or non-α-synucleinopathies from eight centers across China. Plasma miR-44438-containing EV levels were significantly increased in α-synucleinopathies, including those in the prodromal stage (e.g., iRBD), compared to both non-α-synucleinopathy patients and HCs. However, there are no significant differences between Parkinson's disease (PD) and multiple system atrophy. The miR-44438-containing EV levels negatively correlated with age and the Hoehn and Yahr stage of PD patients, suggesting a potential association with disease progression. Furthermore, a longitudinal analysis over 16.3 months demonstrated a significant decline in miR-44438-containing EV levels in patients with PD. These results highlight the potential of plasma miR-44438-containing EV as a biomarker for early detection and progress monitoring of α-synucleinopathies.


Subject(s)
Biomarkers , Circulating MicroRNA , Extracellular Vesicles , Parkinson Disease , Synucleinopathies , Humans , Extracellular Vesicles/metabolism , Male , Biomarkers/blood , Female , Middle Aged , Circulating MicroRNA/blood , Parkinson Disease/blood , Parkinson Disease/diagnosis , Aged , Synucleinopathies/blood , Synucleinopathies/diagnosis , alpha-Synuclein/blood , Case-Control Studies , MicroRNAs/blood , Multiple System Atrophy/blood , Multiple System Atrophy/diagnosis
11.
CNS Neurosci Ther ; 30(4): e14685, 2024 04.
Article in English | MEDLINE | ID: mdl-38634270

ABSTRACT

OBJECTIVE: Neuronal precursor cells expressed developmentally down-regulated 4 (Nedd4) are believed to play a critical role in promoting the degradation of substrate proteins and are involved in numerous biological processes. However, the role of Nedd4 in intracerebral hemorrhage (ICH) remains unknown. This study aims to investigate the regulatory role of Nedd4 in the ICH model. METHODS: Male C57BL/6J mice were induced with ICH. Subsequently, the levels of glutathione peroxidase 4 (GPX4), malondialdehyde (MDA) concentration, iron content, mitochondrial morphology, as well as the expression of divalent metal transporter 1 (DMT1) and Nedd4 were assessed after ICH. Furthermore, the impact of Nedd4 overexpression was evaluated through analyses of hematoma area, ferroptosis, and neurobehavioral function. The mechanism underlying Nedd4-mediated degradation of DMT1 was elecidated using immunoprecipitation (IP) after ICH. RESULTS: Upon ICH, the level of DMT1 in the brain increased, but decreased when Nedd4 was overexpressed using Lentivirus, suggesting a negative correlation between Nedd4 and DMT1. Additionally, the degradation of DMT1 was inhibited after ICH. Furthermore, it was found that Nedd4 can interact with and ubiquitinate DMT1 at lysine residues 6, 69, and 277, facilitating the degradation of DMT1. Functional analysis indicated that overexpression of Nedd4 can alleviate ferroptosis and promote recovery following ICH. CONCLUSION: The results demonstrated that ferroptosis occurs via the Nedd4/DMT1 pathway during ICH, suggesting it potential as a valuable target to inhibit ferroptosis for the treatment of ICH.


Subject(s)
Cation Transport Proteins , Cerebral Hemorrhage , Ferroptosis , Nedd4 Ubiquitin Protein Ligases , Animals , Male , Mice , Brain/metabolism , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Ferroptosis/genetics , Mice, Inbred C57BL , Ubiquitination , Nedd4 Ubiquitin Protein Ligases/metabolism , Cation Transport Proteins/metabolism
12.
NPJ Parkinsons Dis ; 10(1): 63, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493181

ABSTRACT

Multiple system atrophy (MSA) and Parkinson's disease (PD) have clinical overlapping symptoms, which makes differential diagnosis difficult. Our research aimed to distinguish MSA from PD using corneal confocal microscopy (CCM), a noninvasive and objective test. The study included 63 PD patients, 30 MSA patients, and 31 healthy controls (HC). When recruiting PD and MSA, questionnaires were conducted on motor and non-motor functions, such as autonomic and cognitive functions. Participants underwent CCM to quantify the corneal nerve fibers. Corneal nerve fiber density (CNFD) and corneal nerve fiber length (CNFL) values in MSA are lower than PD (MSA vs. PD: CNFD, 20.68 ± 6.70 vs. 24.64 ± 6.43 no./mm2, p < 0.05; CNFL, 12.01 ± 3.25 vs. 14.17 ± 3.52 no./mm2, p < 0.05). In MSA + PD (combined), there is a negative correlation between CNFD and the Orthostatic Grading Scale (OGS) (r = -0.284, p = 0.007). Similarly, CNFD in the only MSA group was negatively correlated with the Unified Multiple System Atrophy Rating Scale I and II (r = -0.391, p = 0.044; r = -0.382, p = 0.049). CNFD and CNFL were inversely associated with MSA (CNFD: ß = -0.071; OR, 0.932; 95% CI, 0.872 ~ 0.996; p = 0.038; CNFL: ß = -0.135; OR, 0.874; 95% CI, 0.768-0.994; p = 0.040). Furthermore, we found the area under the receiver operating characteristic curve (ROC) of CNFL was the largest, 72.01%. The CCM could be an objective and sensitive biomarker to distinguish MSA from PD. It visually reflects a more severe degeneration in MSA compared to PD.

13.
Psychogeriatrics ; 24(2): 415-425, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38339819

ABSTRACT

BACKGROUND: This study set out to investigate the relationship between serum neurofilament light chain (NFL), glial fibrillary acidic protein (GFAP), and various non-motor symptoms (NMSs) in patients with Parkinson's disease (PD). METHODS: The study included 37 healthy controls (HCs) and 51 PD patients. Clinical assessments of PD symptoms were conducted for all PD patients. The NMSS was utilised to evaluate the NMS burden (NMSB) in individuals. Based on the severity of NMSB, we further categorised the PD group into two subgroups: mild-moderate NMSB group and severe-very severe NMSB group. The amounts of NFL and GFAP in the serum were measured using an extremely sensitive single molecule array (Simoa) method. Statistical analyses were performed on the collected data using SPSS 26.0 and R (version 3.6.3). RESULTS: Serum GFAP and NFL levels in the PD group with severe-very severe NMSB were significantly higher than those in the mild-moderate NMSB group (GFAP: P < 0.007; NFL: P < 0.009). Serum NFL and GFAP levels had positive correlations with NMSS total scores (GFAP: r = 0.326, P = 0.020; NFL: r = 0.318, P = 0.023) and multiple subdomains. The relationship between the attention/memory domains of NMSS and NFL levels is significantly positive (r = 0.283, P = 0.044). Similarly, the mood/apathy domains of NMSS are also significantly positively correlated with GFAP levels (r = 0.441, P = 0.001). Patients with emotional problems or cognitive impairment had higher GFAP or NFL levels, respectively. Furthermore, it has been demonstrated that NMSs play a mediating role in the quality of life of patients with PD. Moreover, the combination of NFL and GFAP has proven to be more effective than using a single component in identifying PD patients with severe-very severe NMSB. CONCLUSIONS: The severity of NMSs in PD patients, particularly cognitive and emotional symptoms, was found to be associated with the levels of serum NFL and GFAP. This study marks the first attempt to examine the connection between NMSs of PD and the simultaneous identification of NFL and GFAP levels.


Subject(s)
Intermediate Filaments , Parkinson Disease , Humans , Affect , Glial Fibrillary Acidic Protein , Quality of Life
14.
Front Aging Neurosci ; 16: 1354455, 2024.
Article in English | MEDLINE | ID: mdl-38327498

ABSTRACT

Background: Freezing of gait (FOG) is a common and disabling phenomenon in patients with Parkinson's disease (PD), but effective treatment approach remains inconclusive. Dysfunctional emotional factors play a key role in FOG. Since primary motor cortex (M1) connects with prefrontal areas via the frontal longitudinal system, where are responsible for emotional regulation, we hypothesized M1 may be a potential neuromodulation target for FOG therapy. The purpose of this study is to explore whether high-frequency rTMS over bilateral M1 could relieve FOG and emotional dysregulation in patients with PD. Methods: This study is a single-center, randomized double-blind clinical trial. Forty-eight patients with PD and FOG from the Affiliated Hospital of Xuzhou Medical University were randomly assigned to receive 10 sessions of either active (N = 24) or sham (N = 24) 10 Hz rTMS over the bilateral M1. Patients were evaluated at baseline (T0), after the last session of treatment (T1) and 30 days after the last session (T2). The primary outcomes were Freezing of Gait Questionnaire (FOGQ) scores, with Timed Up and Go Test (TUG) time, Standing-Start 180° Turn (SS-180) time, SS-180 steps, United Parkinson Disease Rating Scales (UPDRS) III, Hamilton Depression scale (HAMD)-24 and Hamilton Anxiety scale (HAMA)-14 as secondary outcomes. Results: Two patients in each group dropped out at T2 and no serious adverse events were reported by any subject. Two-way repeated ANOVAs revealed significant group × time interactions in FOGQ, TUG, SS-180 turn time, SS-180 turning steps, UPDRS III, HAMD-24 and HAMA-14. Post-hoc analyses showed that compared to T0, the active group exhibited remarkable improvements in FOGQ, TUG, SS-180 turn time, SS-180 turning steps, UPDRS III, HAMD-24 and HAMA-14 at T1 and T2. No significant improvement was found in the sham group. The Spearman correlation analysis revealed a significantly positive association between the changes in HAMD-24 and HAMA-14 scores and FOGQ scores at T1. Conclusion: High-frequency rTMS over bilateral M1 can improve FOG and reduce depression and anxiety in patients with PD.

15.
Neuroscience ; 540: 38-47, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38242280

ABSTRACT

Secretory clusterin (sCLU) plays an important role in the research progress of nervous system diseases. However, the physiological function of sCLU in Parkinson's disease (PD) are unclear. The purpose of this study was to examine the effects of sCLU-mediated autophagy on cell survival and apoptosis inhibition in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. We found that MPTP administration induced prolonged pole-climbing time, shortened traction time and rotarod time, significantly decreased TH protein expression in the SN tissue of mice. In contrast, sCLU -treated mice took less time to climb the pole and had an extended traction time and rotating rod time. Meanwhile, sCLU intervention induced increased expression of the TH protein in the SN of mice. These results indicated that sCLU intervention could reduce the loss of dopamine neurons in the SN area and alleviate dyskinesia in mice. Furthermore, MPTP led to suppressed viability, enhanced apoptosis, an increased Bax/Bcl-2 ratio, and cleaved caspase-3 in the SN of mice, and these effects were abrogated by sCLU intervention. In addition, MPTP increased the levels of P62 protein, decreased Beclin1 protein, decreased the ratio of LC3B-II/LC3B-I, and decreased the numbers of autophagosomes and autophagolysosomes in the SN tissues of mice. These effects were also abrogated by sCLU intervention. Activation of PI3K/AKT/mTOR signaling with MPTP inhibited autophagy in the SN of MPTP mice; however, sCLU treatment activated autophagy in MPTP-induced PD mice by inhibiting PI3K/AKT/mTOR signaling. These data indicated that sCLU treatment had a neuroprotective effect in an MPTP-induced model of PD.


Subject(s)
Neuroprotective Agents , Parkinson Disease , Animals , Mice , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Apoptosis , Autophagy , Clusterin/metabolism , Clusterin/pharmacology , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Parkinson Disease/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
16.
J Neurol ; 271(4): 2010-2018, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38175296

ABSTRACT

BACKGROUND: Parkinson's disease (PD) patients with tremor-dominant (TD) and non-tremor-dominant (NTD) subtypes exhibit heterogeneity. Rapid identification of different motor subtypes may help to develop personalized treatment plans. METHODS: The data were acquired from the Parkinson's Disease Progression Marker Initiative (PPMI). Following the identification of predictors utilizing recursive feature elimination (RFE), seven classical machine learning (ML) models, including logistic regression, support vector machine, decision tree, random forest, extreme gradient boosting, etc., were trained to predict patients' motor subtypes, evaluating the performance of models through the area under the receiver operating characteristic curve (AUC) and validating by the follow-up data. RESULTS: The feature subset engendered by RFE encompassed 20 features, comprising some clinical assessments and cerebrospinal fluid α-synuclein (CSF α-syn). ML models fitted in the RFE subset performed better in the test and validation sets. The best performing model was support vector machines with the polynomial kernel (P-SVM), achieving an AUC of 0.898. Five-fold repeated cross-validation showed the P-SVM model with CSF α-syn performed better than the model without CSF α-syn (P = 0.034). The Shapley additive explanation plot (SHAP) illustrated that how the levels of each feature affect the predicted probability as NTD subtypes. CONCLUSION: An interactive web application was developed based on the P-SVM model constructed from feature subset by RFE. It can identify the current motor subtypes of PD patients, making it easier to understand the status of patients and develop personalized treatment plans.


Subject(s)
Parkinson Disease , Tremor , Humans , Parkinson Disease/cerebrospinal fluid , ROC Curve , Algorithms , Logistic Models
17.
CNS Neurosci Ther ; 30(4): e14512, 2024 04.
Article in English | MEDLINE | ID: mdl-37869777

ABSTRACT

OBJECTIVE: Microglial polarization plays a critical role in neuroinflammation and may be a potential therapeutic target for ischemic stroke. This study was to explore the role and underlying molecular mechanism of Circular RNA PTP4A2 (circPTP4A2) in microglial polarization after ischemic stroke. METHODS: C57BL/6J mice underwent transient middle cerebral artery occlusion (tMCAO), while primary mouse microglia and BV2 microglial cells experienced oxygen glucose deprivation/reperfusion (OGD/R) to mimic ischemic conditions. CircPTP4A2 shRNA lentivirus and Colivelin were used to knock down circPTP4A2 and upregulate signal transducer and activator of transcription 3 (STAT3) phosphorylation, respectively. Microglial polarization was assessed using immunofluorescence staining and Western blot. RNA pull-down and RNA binding protein immunoprecipitation (RIP) were applied to detect the binding between circPTP4A2 and STAT3. RESULTS: The levels of circPTP4A2 were significantly increased in plasma and peri-infarct cortex in tMCAO mice. CircPTP4A2 knockdown reduced infarct volume, increased cortical cerebral blood flow (CBF), and attenuated neurological deficits. It also decreased pro-inflammatory factors levels in peri-infarct cortex and plasma, and increased anti-inflammatory factors concentrations 24 h post-stroke. In addition, circPTP4A2 knockdown suppressed M1 microglial polarization and promoted M2 microglial polarization in both tMCAO mice and OGD/R-induced BV2 microglial cells. Moreover, circPTP4A2 knockdown inhibited the phosphorylation of STAT3 induced by oxygen-glucose deprivation. In contrast, increased phosphorylation of STAT3 partly counteracted the effects of circPTP4A2 knockdown. RNA pull-down and RIP assays further certified the binding between circPTP4A2 and STAT3. CONCLUSION: These results revealed regulatory mechanisms of circPTP4A2 that stimulated neuroinflammation by driving STAT3-dependent microglial polarization in ischemic brain injury. CircPTP4A2 knockdown reduced cerebral ischemic injury and promoted microglial M2 polarization, which could be a novel therapeutic target for ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Mice , Animals , Microglia , Ischemic Stroke/metabolism , Brain Ischemia/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Circular/pharmacology , Neuroinflammatory Diseases , STAT3 Transcription Factor/metabolism , Mice, Inbred C57BL , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/metabolism , Brain Injuries/metabolism , Oxygen , Glucose/metabolism
18.
Neurol Sci ; 45(2): 431-453, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37843692

ABSTRACT

Freezing of gait (FoG) is one of the most distressing symptoms of Parkinson's Disease (PD), commonly occurring in patients at middle and late stages of the disease. Automatic and accurate FoG detection and prediction have emerged as a promising tool for long-term monitoring of PD and implementation of gait assistance systems. This paper reviews the recent development of FoG detection and prediction using wearable sensors, with attention on identifying knowledge gaps that need to be filled in future research. This review searched the PubMed and Web of Science databases to collect studies that detect or predict FoG with wearable sensors. After screening, 89 of 270 articles were included. The data description, extracted features, detection/prediction methods, and classification performance were extracted from the articles. As the number of papers of this area is increasing, the performance has been steadily improved. However, small datasets and inconsistent evaluation processes still hinder the application of FoG detection and prediction with wearable sensors in clinical practice.


Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Wearable Electronic Devices , Humans , Parkinson Disease/complications , Parkinson Disease/diagnosis , Gait Disorders, Neurologic/diagnosis , Gait Disorders, Neurologic/etiology , Gait/physiology
20.
Eur J Neurol ; 31(1): e16102, 2024 01.
Article in English | MEDLINE | ID: mdl-37823700

ABSTRACT

BACKGROUND AND PURPOSE: Neuronal intranuclear inclusion disease (NIID) poses a diagnostic challenge because of its diverse clinical manifestations. Detection of intranuclear inclusions remains the primary diagnostic criterion for NIID. Skin biopsies have traditionally been used, but concerns exist regarding postoperative complications and scarring. We sought to investigate the diagnostic utility of labial salivary gland biopsy, a less invasive alternative. METHODS: This study included a total of 19 patients and 11 asymptomatic carriers who underwent labial gland biopsies, while 10 patients opted for skin biopsies. All these individuals were confirmed to have pathogenic GGC repeat expansions in the NOTCH2NLC gene. The control group comprised 20 individuals matched for age and sex, all with nonpathogenic GGC repeat expansions, and their labial gland tissue was sourced from oral surgery specimens. RESULTS: Labial gland biopsies proved to be a highly effective diagnostic method in detecting eosinophilic intranuclear inclusions in NIID patients. The inclusions showed positive staining for p62 and ubiquitin, confirming their pathological significance. The presence of uN2CpolyG protein in the labial gland tissue further supported the diagnosis. Importantly, all patients who underwent lip gland biopsy experienced fast wound healing without any noticeable scarring. In contrast, skin biopsies led to varying degrees of scarring and one instance of a localized infection. CONCLUSION: Labial salivary gland biopsy emerged as a minimally invasive, efficient diagnostic method for NIID, with rapid healing and excellent sensitivity.


Subject(s)
Intranuclear Inclusion Bodies , Lip , Humans , Intranuclear Inclusion Bodies/genetics , Intranuclear Inclusion Bodies/pathology , Lip/pathology , Cicatrix/pathology , Salivary Glands/pathology , Biopsy/methods
SELECTION OF CITATIONS
SEARCH DETAIL