Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Surg Res ; 19(1): 342, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849945

ABSTRACT

BACKGROUND: Endoscopic spine lumbar interbody fusion (Endo-LIF) is well-regarded within the academic community. However, it presents challenges such as intraoperative disorientation, high rates of nerve damage, a steep learning curve, and prolonged surgical times, often occurring during the creation of the operative channel. Furthermore, the undefined safe operational zones under endoscopy continue to pose risks to surgical safety. We aimed to analyse the anatomical data of Kambin's triangle via CT imaging to define the parameters of the safe operating area for transforaminal posterior lumbar interbody fusion (TPLIF), providing crucial insights for clinical practice. METHODS: We selected the L4-L5 intervertebral space. Using three-dimensional (3D), we identified Kambin's triangle and the endocircle within it, and recorded the position of point 'J' on the adjacent facet joint as the centre 'O' of the circle shifts by angle 'ß.' The diameter of the inscribed circle 'd,' the abduction angle 'ß,' and the distances 'L1' and 'L2' were measured from the trephine's edge to the exiting and traversing nerve roots, respectively. RESULTS: Using a trephine with a diameter of 8 mm in TPLIF has a significant safety distance. The safe operating area under the TPLIF microscope was also clarified. CONCLUSIONS: Through CT imaging research, combined with 3D simulation, we identified the anatomical data of the L4-L5 segment Kambin's triangle, to clarify the safe operation area under TPLIF. We propose a simple and easy positioning method and provide a novel surgical technique to establish working channels faster and reduce nerve damage rates. At the same time, according to this method, the Kambin's triangle anatomical data of the patient's lumbar spine diseased segments can be measured through CT 3D reconstruction of the lumbar spine, and individualised preoperative design can be conducted to select the appropriate specifications of visible trephine and supporting tools. This may effectively reduce the learning curve, shorten the time operation time, and improve surgical safety.


Subject(s)
Imaging, Three-Dimensional , Lumbar Vertebrae , Spinal Fusion , Tomography, X-Ray Computed , Humans , Spinal Fusion/methods , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Imaging, Three-Dimensional/methods , Tomography, X-Ray Computed/methods , Male , Female , Middle Aged , Endoscopy/methods , Models, Anatomic , Aged
2.
Eur J Pharmacol ; 920: 174858, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35219729

ABSTRACT

Cardiac hypertrophy is a major risk factor for developing heart failure. This study investigates the effects of the natural flavone acacetin on myocardial hypertrophy in cellular level and whole animals. In cardiomyocytes from neonatal rat with hypertrophy induced by angiotensin II (Ang II), acacetin at 0.3, 1, and 3 µM reduced the increased myocyte surface area, brain natriuretic peptide (BNP), and ROS production by upregulating anti-oxidative molecules (i.e. Nrf2, SOD1, SOD2, HO-1), anti-apoptotic protein Bcl-2, and downregulating the pro-apoptotic protein Bax and the inflammatory cytokine IL-6 in a concentration-dependent manner. In addition, acacetin rescued Ang II-induced impairment of PGC-1α, PPARα and pAMPK. These beneficial effects of acacetin were mediated by activation of Sirt1, which was confirmed in cardiac hypertrophy induced by abdominal aorta constriction (AAC) in SD rats. Acacetin prodrug (10 mg/kg, s.c., b.i.d.) treatment reduced the elevated artery blood pressure, improved the increased heart size and thickness of left ventricular wall and the ventricular fibrosis associated with inhibiting myocardial fibrosis and BNP, and reversed the impaired protective signal molecules including PGC-1α, Nrf2, PPARα, pAMPK and Sirt1 of left ventricular tissue. Our results demonstrate the novel pharmacological effect that acacetin ameliorates cardiac hypertrophy via Sirt1-mediated activation of AMPK/PGC-1α signal molecules followed by reducing oxidation, inflammation and apoptosis.


Subject(s)
AMP-Activated Protein Kinases , Cardiomegaly , Flavones , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Sirtuin 1 , AMP-Activated Protein Kinases/metabolism , Animals , Cardiomegaly/drug therapy , Cardiomegaly/metabolism , Flavones/pharmacology , Myocytes, Cardiac , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rats , Rats, Sprague-Dawley , Sirtuin 1/metabolism
3.
J Cell Mol Med ; 25(1): 521-534, 2021 01.
Article in English | MEDLINE | ID: mdl-33241629

ABSTRACT

Oxidative stress has a considerable influence on endothelial cell dysfunction and atherosclerosis. Acacetin, an anti-inflammatory and antiarrhythmic, is frequently used in the treatment of myocarditis, albeit its role in managing atherosclerosis is currently unclear. Thus, we evaluated the regulatory effects of acacetin in maintaining endothelial cell function and further investigated whether the flavonoid could attenuate atherosclerosis in apolipoprotein E deficiency (apoE-/- ) mice. Different concentrations of acacetin were tested on EA.hy926 cells, either induced or non-induced by human oxidized low-density lipoprotein (oxLDL), to clarify its influence on cell viability, cellular reactive oxidative stress (ROS) level, apoptotic ratios and other regulatory effects. In vivo, apoE-/- mice were fed either a Western diet or a chow diet. Acacetin pro-drug (15 mg/kg) was injected subcutaneously two times a day for 12 weeks. The effects of acacetin on the atherosclerotic process, plasma inflammatory factors and lipid metabolism were also investigated. Acacetin significantly increased EA.hy926 cell viability by reducing the ratios of apoptotic and necrotic cells at 3 µmol/L. Moreover, 3 µmol/L acacetin clearly decreased ROS levels and enhanced reductase protein expression through MsrA and Nrf2 pathway through phosphorylation of Nrf2 and degradation of Keap1. In vivo, acacetin treatment remarkably attenuated atherosclerosis by increasing reductase levels in circulation and aortic roots, decreasing plasma inflammatory factor levels as well as accelerating lipid metabolism in Western diet-fed apoE-/- mice. Our findings demonstrate the anti-oxidative and anti-atherosclerotic effects of acacetin, in turn suggesting its potential therapeutic value in atherosclerotic-related cardiovascular diseases (CVD).


Subject(s)
Antioxidants/metabolism , Apolipoproteins E/metabolism , Atherosclerosis/metabolism , Endothelial Cells/metabolism , Flavones/therapeutic use , NF-E2-Related Factor 2/metabolism , Animals , Apolipoproteins E/genetics , Cell Line , Cell Survival/genetics , Cell Survival/physiology , Flow Cytometry , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , Oxidative Stress/genetics , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism
4.
J Cell Mol Med ; 24(20): 12141-12153, 2020 10.
Article in English | MEDLINE | ID: mdl-32918384

ABSTRACT

Doxorubicin cardiotoxicity is frequently reported in patients undergoing chemotherapy. The present study investigates whether cardiomyopathy induced by doxorubicin can be improved by the natural flavone acacetin in a mouse model and uncovers the potential molecular mechanism using cultured rat cardiomyoblasts. It was found that the cardiac dysfunction and myocardial fibrosis induced by doxorubicin were significantly improved by acacetin in mice with impaired Nrf2/HO-1 and Sirt1/pAMPK molecules, which is reversed by acacetin treatment. Doxorubicin decreased cell viability and increased ROS production in rat cardiomyoblasts; these effects are significantly countered by acacetin (0.3-3 µM) in a concentration-dependent manner via activating Sirt1/pAMPK signals and enhancing antioxidation (Nrf2/HO-1 and SOD1/SOD2) and anti-apoptosis. These protective effects were abolished in cells with silencing Sirt1. The results demonstrate for the first time that doxorubicin cardiotoxicity is antagonized by acacetin via Sirt1-mediated activation of AMPK/Nrf2 signal molecules, indicating that acacetin may be a drug candidate used clinically for protecting against doxorubicin cardiomyopathy.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Cardiomyopathies/chemically induced , Cardiomyopathies/drug therapy , Doxorubicin/adverse effects , Flavones/therapeutic use , NF-E2-Related Factor 2/metabolism , Signal Transduction , Sirtuin 1/metabolism , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Cardiomyopathies/metabolism , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Cell Line , Cell Survival/drug effects , Flavones/pharmacology , Gene Silencing , Heart Ventricles/drug effects , Heart Ventricles/pathology , Male , Mice, Inbred C57BL , Myocardium/pathology , Rats , Reactive Oxygen Species/metabolism
5.
Front Pharmacol ; 9: 497, 2018.
Article in English | MEDLINE | ID: mdl-29867499

ABSTRACT

The present study investigates the potential signal pathway of acacetin in cardioprotection against ischemia/reperfusion injury using an in vitro hypoxia/reoxygenation model in primary cultured neonatal rat cardiomyocytes and H9C2 cardiomyoblasts. It was found that acacetin (0.3-3 µM) significantly decreased the apoptosis and reactive oxygen species production induced by hypoxia/reoxygenation injury in cardiomyocytes and H9C2 cardiomyoblasts via reducing the pro-apoptotic proteins Bax and cleaved-caspase-3 and increasing the anti-apoptotic protein Bcl-2. In addition, acacetin not only suppressed the release of pro-inflammatory cytokines TLR-4 and IL-6 induced by hypoxia/reoxygenation injury, but also increased the secretion of anti-inflammatory cytokine IL-10. Moreover, acacetin increased Nrf2 and HO-1 in a concentration-dependent manner, and rescued SOD1 and SOD2 reduction induced by hypoxia/reoxygenation insult. These beneficial effects of acacetin disappeared in cells with silenced Nrf2, suggesting that Nrf2 activation participates in the cardioprotective effect of acacetin against hypoxia/reoxygenation insult. However, acacetin-induced Nrf2 activation was not observed in cells with silenced AMPK and in ventricular tissues of rat hearts treated with the AMPK inhibitor Compound C and subjected to ischemia/reperfusion injury. Our results demonstrate for the first time that AMPK-mediated Nrf2 activation is involved in the cardiomyocytes protection of acacetin against hypoxia/reoxygenation injury by activating a series of intracellular signals involved in anti-oxidation, anti-inflammation, and anti-apoptosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...