Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Front Immunol ; 15: 1285215, 2024.
Article in English | MEDLINE | ID: mdl-38629063

ABSTRACT

The analytical capability of flow cytometry is crucial for differentiating the growing number of cell subsets found in human blood. This is important for accurate immunophenotyping of patients with few cells and a large number of parameters to monitor. Here, we present a 43-parameter panel to analyze peripheral blood mononuclear cells from healthy individuals using 41 fluorescence-labelled monoclonal antibodies, an autofluorescent channel, and a viability dye. We demonstrate minimal population distortions that lead to optimized population identification and reproducible results. We have applied an advanced approach in panel design, in selection of sample acquisition parameters and in data analysis. Appropriate autofluorescence identification and integration in the unmixing matrix, allowed for resolution of unspecific signals and increased dimensionality. Addition of one laser without assigned fluorochrome resulted in decreased fluorescence spill over and improved discrimination of cell subsets. It also increased the staining index when autofluorescence was integrated in the matrix. We conclude that spectral flow cytometry is a highly valuable tool for high-end immunophenotyping, and that fine-tuning of major experimental steps is key for taking advantage of its full capacity.


Subject(s)
Fluorescent Dyes , Leukocytes, Mononuclear , Humans , Antibodies, Monoclonal , Leukocyte Count , Light
2.
Cell Rep ; 43(1): 113676, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38217855

ABSTRACT

Natural killer (NK) cells are the predominant lymphocyte population in the liver. At the onset of non-alcoholic steatohepatitis (NASH), an accumulation of activated NK cells is observed in the liver in parallel with inflammatory monocyte recruitment and an increased systemic inflammation. Using in vivo and in vitro experiments, we unveil a specific stimulation of NK cell-poiesis during NASH by medullary monocytes that trans-present interleukin-15 (IL-15) and secrete osteopontin, a biomarker for patients with NASH. This cellular dialogue leads to increased survival and maturation of NK precursors that are recruited to the liver, where they dampen the inflammatory monocyte infiltration. The increase in the production of both osteopontin and the IL-15/IL-15Rα complex by bone marrow monocytes is induced by endotoxemia. We propose a tripartite gut-liver-bone marrow axis regulating the immune population dynamics and effector functions during liver inflammation.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Monocytes , Osteopontin , Interleukin-15 , Bone Marrow , Inflammation , Killer Cells, Natural , Mice, Inbred C57BL
3.
bioRxiv ; 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37662317

ABSTRACT

During embryogenesis, yolk-sac and intra-embryonic-derived hematopoietic progenitors, comprising the precursors of adult hematopoietic stem cells, converge into the fetal liver. With a new staining strategy, we defined all non-hematopoietic components of the fetal liver and found that hepatoblasts are the major producers of hematopoietic growth factors. We identified mesothelial cells, a novel component of the stromal compartment, producing Kit ligand, a major hematopoietic cytokine. A high-definition imaging dataset analyzed using a deep-learning based pipeline allowed the unambiguous identification of hematopoietic and stromal populations, and enabled determining a neighboring network composition, at the single cell resolution. Throughout active hematopoiesis, progenitors preferentially associate with hepatoblasts, but not with stellate or endothelial cells. We found that, unlike yolk sac-derived progenitors, intra-embryonic progenitors respond to a chemokine gradient created by CXCL12-producing stellate cells. These results revealed that FL hematopoiesis is a spatiotemporal dynamic process, defined by an environment characterized by low cytokine concentrations.

4.
iScience ; 26(10): 107890, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37766969

ABSTRACT

The developmental cartography of human lymphopoiesis remains incompletely understood. Here, we establish a multimodal map demonstrating that lymphoid specification follows independent direct or stepwise hierarchic routes converging toward the emergence of newly characterized CD117lo multi-lymphoid progenitors (MLPs) that undergo a proliferation arrest before entering the CD127- (NK/ILC/T) or CD127+ (B) lymphoid pathways. While the differentiation of CD127- early lymphoid progenitors is mainly driven by Flt3 signaling, emergence of their CD127+ counterparts is regulated cell-intrinsically and depends exclusively on the divisional history of their upstream precursors, including hematopoietic stem cells. Further, transcriptional mapping of differentiation trajectories reveals that whereas myeloid granulomonocytic lineages follow continuous differentiation pathways, lymphoid trajectories are intrinsically discontinuous and characterized by sequential waves of cell proliferation allowing pre-commitment amplification of lymphoid progenitor pools. Besides identifying new lymphoid specification pathways and regulatory checkpoints, our results demonstrate that NK/ILC/T and B lineages are under fundamentally distinct modes of regulation. (149 words).

5.
Cell Rep ; 42(6): 112618, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37294633

ABSTRACT

Changes in lymphocyte production patterns occurring across human ontogeny remain poorly defined. In this study, we demonstrate that human lymphopoiesis is supported by three waves of embryonic, fetal, and postnatal multi-lymphoid progenitors (MLPs) differing in CD7 and CD10 expression and their output of CD127-/+ early lymphoid progenitors (ELPs). In addition, our results reveal that, like the fetal-to-adult switch in erythropoiesis, transition to postnatal life coincides with a shift from multilineage to B lineage-biased lymphopoiesis and an increase in production of CD127+ ELPs, which persists until puberty. A further developmental transition is observed in elderly individuals whereby B cell differentiation bypasses the CD127+ compartment and branches directly from CD10+ MLPs. Functional analyses indicate that these changes are determined at the level of hematopoietic stem cells. These findings provide insights for understanding identity and function of human MLPs and the establishment and maintenance of adaptative immunity.


Subject(s)
Hematopoietic Stem Cells , Lymphopoiesis , Adult , Humans , Aged , Cell Differentiation , Cell Lineage , Hematopoiesis
6.
Immunol Rev ; 315(1): 54-70, 2023 05.
Article in English | MEDLINE | ID: mdl-36869420

ABSTRACT

During embryonic development, several independent generations of hematopoietic cells were identified. They occur in the yolk sac and the intra-embryonic major arteries, in a narrow window of development. They arise sequentially, starting with primitive erythrocytes in the yolk sac blood islands, progressing to less differentiated erythromyeloid progenitors still in the yolk sac, and culminating with multipotent progenitors, some of which will generate the adult hematopoietic stem cell compartment. All these cells contribute to the formation of a layered hematopoietic system that reflects adaptative strategies to the fetal environment and the embryo's needs. It is mostly composed, at these stages, of erythrocytes and tissue-resident macrophages both of yolk sac origin, the latter persisting throughout life. We propose that subsets of lymphocytes of embryonic origin derive from a different intra-embryonic generation of multipotent cells occurring before the emergence of hematopoietic stem cell progenitors. These multipotent cells have a limited lifespan and generate cells that provide basic protection against pathogens before the adaptive immune system is functional, contribute to tissue development and homeostasis, and shape the establishment of a functional thymus. Understanding the properties of these cells will impact the understanding of childhood leukemia and of adult autoimmune pathology and thymic involution.


Subject(s)
Erythrocytes , Hematopoietic Stem Cells , Pregnancy , Female , Humans , Cell Differentiation , Hematopoiesis
7.
Cytometry A ; 101(11): 960-969, 2022 11.
Article in English | MEDLINE | ID: mdl-35491762

ABSTRACT

The fetal liver (FL) is the main hematopoietic organ during embryonic development. The FL is also the unique anatomical site where hematopoietic stem cells expand before colonizing the bone marrow, where they ensure life-long blood cell production and become mostly resting. The identification of the different cell types that comprise the hematopoietic stroma in the FL is essential to understand the signals required for the expansion and differentiation of the hematopoietic stem cells. We used a panel of monoclonal antibodies to identify FL stromal cells in a 5-laser equipped spectral flow cytometry (FCM) analyzer. The "Autofluorescence Finder" of SONY ID7000 software identified two distinct autofluorescence emission spectra. Using autofluorescence as a fluorescence parameter we could assign the two autofluorescent signals to three distinct cell types and identified surface markers that characterize these populations. We found that one autofluorescent population corresponds to hepatoblast-like cells and cholangiocytes whereas the other expresses mesenchymal transcripts and was identified as stellate cells. Importantly, after birth, autofluorescence becomes the unique identifying property of hepatoblast-like cells because mature cholangiocytes are no longer autofluorescent. These results show that autofluorescence used as a parameter in spectral FCM is a useful tool to identify new cell subsets that are difficult to analyze in conventional FCM.


Subject(s)
Hematopoietic Stem Cells , Liver , Pregnancy , Female , Humans , Bone Marrow Cells , Cell Differentiation , Bone Marrow , Flow Cytometry
8.
Bio Protoc ; 11(19): e4177, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34722824

ABSTRACT

The formation of spheroids with mesenchymal stem/stromal cells (MSCs), mesenchymal bodies (MBs), is usually performed using bioreactors or conventional well plates. While these methods promote the formation of a large number of spheroids, they provide limited control over their structure or over the regulation of their environment. It has therefore been hard to elucidate the mechanisms orchestrating the structural organization and the induction of the trophic functions of MBs until now. We have recently demonstrated an integrated droplet-based microfluidic platform for the high-density formation and culture of MBs, as well as for the quantitative characterization of the structural and functional organization of cells within them. The protocol starts with a suspension of a few hundred MSCs encapsulated within microfluidic droplets held in capillary traps. After droplet immobilization, MSCs start clustering and form densely packed spherical aggregates that display a tight size distribution. Quantitative imaging is used to provide a robust demonstration that human MSCs self-organize in a hierarchical manner, by taking advantage of the good fit between the microfluidic chip and conventional microscopy techniques. Moreover, the structural organization within the MBs is found to correlate with the induction of osteo-endocrine functions (i.e., COX-2 and VEGF-A expression). Therefore, the present platform provides a unique method to link the structural organization in MBs to their functional properties. Graphic abstract: Droplet microfluidic platform for integrated formation, culture, and characterization of mesenchymal bodies (MBs). The device is equipped with a droplet production area (flow focusing) and a culture chamber that enables the culture of 270 MBs in parallel. A layer-by-layer analysis revealed a hierarchical developmental organization within MBs.

9.
Cell Rep ; 37(4): 109887, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34706233

ABSTRACT

In emergency myelopoiesis (EM), expansion of the myeloid progenitor compartment and increased myeloid cell production are observed and often mediated by the pro-inflammatory cytokine interferon gamma (IFN-γ). Interleukin-10 (IL-10) inhibits IFN-γ secretion, but paradoxically, its therapeutic administration to humans causes hematologic changes similar to those observed in EM. In this work, we use different in vivo systems, including a humanized immune system mouse model, to show that IL-10 triggers EM, with a significant expansion of the myeloid progenitor compartment and production of myeloid cells. Hematopoietic progenitors display a prominent IFN-γ transcriptional signature, and we show that IFN-γ mediates IL-10-driven EM. We also find that IL-10, unexpectedly, reprograms CD4 and CD8 T cells toward an activation state that includes IFN-γ production by these T cell subsets in vivo. Therefore, in addition to its established anti-inflammatory properties, IL-10 can induce IFN-γ production and EM, opening additional perspectives for the design of IL-10-based immunotherapies.


Subject(s)
Interferon-gamma/immunology , Interleukin-10/immunology , Myeloid Progenitor Cells/immunology , Myelopoiesis/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Interferon-gamma/genetics , Interleukin-10/genetics , Mice , Mice, Knockout , Myelopoiesis/genetics
10.
J Exp Med ; 218(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33566111

ABSTRACT

In the embryo, the first hematopoietic cells derive from the yolk sac and are thought to be rapidly replaced by the progeny of hematopoietic stem cells. We used three lineage-tracing mouse models to show that, contrary to what was previously assumed, hematopoietic stem cells do not contribute significantly to erythrocyte production up until birth. Lineage tracing of yolk sac erythromyeloid progenitors, which generate tissue resident macrophages, identified highly proliferative erythroid progenitors that rapidly differentiate after intra-embryonic injection, persisting as the major contributors to the embryonic erythroid compartment. We show that erythrocyte progenitors of yolk sac origin require 10-fold lower concentrations of erythropoietin than their hematopoietic stem cell-derived counterparts for efficient erythrocyte production. We propose that, in a low erythropoietin environment in the fetal liver, yolk sac-derived erythrocyte progenitors efficiently outcompete hematopoietic stem cell progeny, which fails to generate megakaryocyte and erythrocyte progenitors.


Subject(s)
Embryonic Development/genetics , Erythrocytes/metabolism , Erythropoiesis , Megakaryocyte Progenitor Cells/metabolism , Yolk Sac/physiology , Animals , Cell Lineage/genetics , Erythropoietin/metabolism , Female , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Pregnancy , Proto-Oncogene Proteins c-myb/deficiency , Proto-Oncogene Proteins c-myb/genetics
11.
Blood ; 137(8): 1024-1036, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33025012

ABSTRACT

During embryonic development, multiple waves of hematopoietic progenitors with distinct lineage potential are differentially regulated in time and space. Two different waves of thymic progenitors colonize the fetal thymus where they contribute to thymic organogenesis and homeostasis. The origin, the lineage differentiation potential of the first wave, and their relative contribution in shaping the thymus architecture, remained, however, unclear. Here, we show that the first wave of thymic progenitors comprises a unique population of bipotent T and innatel lymphoid cells (T/ILC), generating a lymphoid tissue inducer cells (LTi's), in addition to invariant Vγ5+ T cells. Transcriptional analysis revealed that innate lymphoid gene signatures and, more precisely, the LTi-associated transcripts were expressed in the first, but not in the second, wave of thymic progenitors. Depletion of early thymic progenitors in a temporally controlled manner showed that the progeny of the first wave is indispensable for the differentiation of autoimmune regulator-expressing medullary thymic epithelial cells (mTECs). We further show that these progenitors are of strict hematopoietic stem cell origin, despite the overlap between lymphopoiesis initiation and the transient expression of lymphoid-associated transcripts in yolk sac (YS) erythromyeloid-restricted precursors. Our work highlights the relevance of the developmental timing on the emergence of different lymphoid subsets, required for the establishment of a functionally diverse immune system.


Subject(s)
Lymphoid Progenitor Cells/cytology , T-Lymphocytes/cytology , Thymus Gland/cytology , Thymus Gland/embryology , Animals , Cells, Cultured , Female , Gene Expression Regulation, Developmental , Lymphoid Progenitor Cells/metabolism , Lymphopoiesis , Mice, Inbred C57BL , T-Lymphocytes/metabolism , Thymus Gland/metabolism , Transcriptome
12.
Front Cell Dev Biol ; 8: 612, 2020.
Article in English | MEDLINE | ID: mdl-32793589

ABSTRACT

Hematopoietic stem cells (HSCs) generated during embryonic development are able to maintain hematopoiesis for the lifetime, producing all mature blood lineages. HSC transplantation is a widely used cell therapy intervention in the treatment of hematologic, autoimmune and genetic disorders. Its use, however, is hampered by the inability to expand HSCs ex vivo, urging for a better understanding of the mechanisms regulating their physiological expansion. In the adult, HSCs reside in the bone marrow, in specific microenvironments that support stem cell maintenance and differentiation. Conversely, while developing, HSCs are transiently present in the fetal liver, the major hematopoietic site in the embryo, where they expand. Deeper insights on the dynamics of fetal liver composition along development, and on how these different cell types impact hematopoiesis, are needed. Both, the hematopoietic and hepatic fetal systems have been extensively studied, albeit independently. This review aims to explore their concurrent establishment and evaluate to what degree they may cross modulate their respective development. As insights on the molecular networks that govern physiological HSC expansion accumulate, it is foreseeable that strategies to enhance HSC proliferation will be improved.

13.
Sci Rep ; 10(1): 8734, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32457349

ABSTRACT

Infection of mice with Rift Valley fever virus (RVFV) reproduces major pathological features of severe human disease, notably the early-onset hepatitis and delayed-onset encephalitis. We previously reported that the Rvfs2 locus from the susceptible MBT/Pas strain reduces survival time after RVFV infection. Here, we used BALB/cByJ (BALB) mice congenic for Rvfs2 (C.MBT-Rvfs2) to investigate the pathophysiological mechanisms impacted by Rvfs2. Clinical, biochemical and histopathological features indicated similar liver damage in BALB and C.MBT-Rvfs2 mice until day 5 after infection. However, while C.MBT-Rvfs2 mice succumbed from acute liver injury, most BALB mice recovered and died later of encephalitis. Hepatocytes of BALB infected liver proliferated actively on day 6, promoting organ regeneration and recovery from liver damage. By comparison with C.MBT-Rvfs2, BALB mice had up to 100-fold lower production of infectious virions in the peripheral blood and liver, strongly decreased RVFV protein in liver and reduced viral replication in primary cultured hepatocytes, suggesting that the BALB Rvfs2 haplotype limits RVFV pathogenicity through decreased virus replication. Moreover, bone marrow chimera experiments showed that both hematopoietic and non-hematopoietic cells are required for the protective effect of the BALB Rvfs2 haplotype. Altogether, these results indicate that Rvfs2 controls critical events which allow survival to RVFV-induced hepatitis.


Subject(s)
Chromosomes, Human, Pair 11/genetics , Genetic Loci , Hepatitis/mortality , Infectious Encephalitis/mortality , Rift Valley Fever/genetics , Rift Valley fever virus/pathogenicity , Animals , Cell Proliferation , Disease Models, Animal , Disease Susceptibility , Hepatitis/virology , Humans , Infectious Encephalitis/virology , Liver/cytology , Liver/virology , Male , Mice , Mice, Congenic , Mice, Inbred BALB C , Rift Valley Fever/complications , Rift Valley Fever/mortality
14.
Sci Adv ; 6(10): eaaw7853, 2020 03.
Article in English | MEDLINE | ID: mdl-32181333

ABSTRACT

Organoids that recapitulate the functional hallmarks of anatomic structures comprise cell populations able to self-organize cohesively in 3D. However, the rules underlying organoid formation in vitro remain poorly understood because a correlative analysis of individual cell fate and spatial organization has been challenging. Here, we use a novel microfluidics platform to investigate the mechanisms determining the formation of organoids by human mesenchymal stromal cells that recapitulate the early steps of condensation initiating bone repair in vivo. We find that heterogeneous mesenchymal stromal cells self-organize in 3D in a developmentally hierarchical manner. We demonstrate a link between structural organization and local regulation of specific molecular signaling pathways such as NF-κB and actin polymerization, which modulate osteo-endocrine functions. This study emphasizes the importance of resolving spatial heterogeneities within cellular aggregates to link organization and functional properties, enabling a better understanding of the mechanisms controlling organoid formation, relevant to organogenesis and tissue repair.


Subject(s)
Mesenchymal Stem Cells/metabolism , Microfluidic Analytical Techniques , Organoids/metabolism , Osteoblasts/metabolism , Signal Transduction/genetics , Tissue Engineering/methods , Actins/genetics , Actins/metabolism , Adipocytes/cytology , Adipocytes/metabolism , Bone Regeneration , Bone and Bones , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Culture Techniques , Cell Differentiation , Chondrocytes/cytology , Chondrocytes/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Gene Expression Regulation , Glycoproteins/genetics , Glycoproteins/metabolism , Humans , Mesenchymal Stem Cells/cytology , NF-kappa B/genetics , NF-kappa B/metabolism , Organogenesis , Organoids/cytology , Osteoblasts/cytology , Polymerization , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
15.
Front Cell Dev Biol ; 8: 606642, 2020.
Article in English | MEDLINE | ID: mdl-33392196

ABSTRACT

The identification of distinct waves of progenitors during development, each corresponding to a specific time, space, and function, provided the basis for the concept of a "layered" organization in development. The concept of a layered hematopoiesis was established by classical embryology studies in birds and amphibians. Recent progress in generating reliable lineage tracing models together with transcriptional and proteomic analyses in single cells revealed that, also in mammals, the hematopoietic system evolves in successive waves of progenitors with distinct properties and fate. During embryogenesis, sequential waves of hematopoietic progenitors emerge at different anatomic sites, generating specific cell types with distinct functions and tissue homing capacities. The first progenitors originate in the yolk sac before the emergence of hematopoietic stem cells, some giving rise to progenies that persist throughout life. Hematopoietic stem cell-derived cells that protect organisms against environmental pathogens follow the same sequential strategy, with subsets of lymphoid cells being only produced during embryonic development. Growing evidence indicates that fetal immune cells contribute to the proper development of the organs they seed and later ensure life-long tissue homeostasis and immune protection. They include macrophages, mast cells, some γδ T cells, B-1 B cells, and innate lymphoid cells, which have "non-redundant" functions, and early perturbations in their development or function affect immunity in the adult. These observations challenged the view that all hematopoietic cells found in the adult result from constant and monotonous production from bone marrow-resident hematopoietic stem cells. In this review, we evaluate evidence for a layered hematopoietic system across species. We discuss mechanisms and selective pressures leading to the temporal generation of different cell types. We elaborate on the consequences of disturbing fetal immune cells on tissue homeostasis and immune development later in life.

16.
Int J Mol Sci ; 20(21)2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31690060

ABSTRACT

Innate lymphoid cells (ILC) are important players of early immune defenses in situations like lymphoid organogenesis or in case of immune response to inflammation, infection and cancer. Th1 and Th2 antagonism is crucial for the regulation of immune responses, however mechanisms are still unclear for ILC functions. ILC2 and NK cells were reported to be both involved in allergic airway diseases and were shown to be able to interplay in the regulation of the immune response. CXCR6 is a common chemokine receptor expressed by all ILC, and its deficiency affects ILC2 and ILC1/NK cell numbers and functions in lungs in both steady-state and inflammatory conditions. We determined that the absence of a specific ILC2 KLRG1+ST2- subset in CXCR6-deficient mice is probably dependent on CXCR6 for its recruitment to the lung under inflammation. We show that despite their decreased numbers, lung CXCR6-deficient ILC2 are even more activated cells producing large amount of type 2 cytokines that could drive eosinophilia. This is strongly associated to the decrease of the lung Th1 response in CXCR6-deficient mice.


Subject(s)
Lymphocyte Subsets/immunology , Pneumonia/immunology , Receptors, CXCR6/metabolism , Animals , Cells, Cultured , Interferon-gamma/genetics , Interferon-gamma/metabolism , Mice , Papain/toxicity , Pneumonia/etiology , Receptors, CXCR6/genetics
17.
Biomed J ; 42(4): 209-217, 2019 08.
Article in English | MEDLINE | ID: mdl-31627863

ABSTRACT

During embryonic development multiple waves of hematopoietic progenitors with distinct lineage potential are differentially regulated in time and space. Consistent with this view, some specialized lymphocytes emerge during a limited time-window in embryogenesis and migrate to the tissues where they contribute to organogenesis and to tissue homeostasis. These cells are not constantly produced by bone marrow derived hematopoietic stem cells but are maintained in tissues and self-renew throughout life. These particular cell subsets are produced from lymphoid restricted progenitors only found in the first days of fetal liver hematopoietic activity. Growing evidence of the heterogeneity and layered organization of the hematopoietic system is leading to a common view that some lymphocyte subsets are functionally different because they follow distinct developmental programs and emerge from distinct waves of lymphoid progenitors. However, understanding the influence of developmental origin and the relative contribution of local microenvironment on the development of these specialized lymphocyte subsets needs further analysis. In this review, we discuss how different pathways followed by developing B cells during ontogeny may contribute to the diverse functions.


Subject(s)
B-Lymphocytes/cytology , Cell Differentiation/physiology , Cell Lineage/physiology , Hematopoietic Stem Cells/cytology , Animals , Humans , Liver/pathology , Time Factors
18.
PLoS Biol ; 17(6): e3000335, 2019 06.
Article in English | MEDLINE | ID: mdl-31246945

ABSTRACT

The assessment of the regenerative capacity of the heart has been compromised by the lack of surface signatures to characterize cardiomyocytes (CMs). Here, combined multiparametric surface marker analysis with single-cell transcriptional profiling and in vivo transplantation identify the main mouse fetal cardiac populations and their progenitors (PRGs). We found that CMs at different stages of differentiation coexist during development. We identified a population of immature heat stable antigen (HSA)/ cluster of differentiation 24 (CD24)+ CMs that persists throughout life and that, unlike other CM subsets, actively proliferates up to 1 week of age and engrafts cardiac tissue upon transplantation. In the adult heart, a discrete population of HSA/CD24+ CMs appears as mononucleated cells that increase in frequency after infarction. Our work identified cell surface signatures that allow the prospective isolation of CMs at all developmental stages and the detection of a subset of immature CMs throughout life that, although at reduced frequencies, are poised for activation in response to ischemic stimuli. This work opens new perspectives in the understanding and treatment of heart pathologies.


Subject(s)
CD24 Antigen/metabolism , Cell Lineage/physiology , Myocytes, Cardiac/metabolism , Animals , CD24 Antigen/physiology , Cell Differentiation , Female , Heart/growth & development , Heart/physiology , Male , Mice , Mice, Inbred C57BL , Myocardial Ischemia/metabolism , Myocardial Ischemia/physiopathology , Myocardium/metabolism , Myocytes, Cardiac/physiology , Regeneration/physiology , Single-Cell Analysis
19.
Annu Rev Immunol ; 37: 497-519, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31026413

ABSTRACT

During development innate lymphoid cells and specialized lymphocyte subsets colonize peripheral tissues, where they contribute to organogenesis and later constitute the first line of protection while maintaining tissue homeostasis. A few of these subsets are produced only during embryonic development and remain in the tissues throughout life. They are generated through a unique developmental program initiated in lympho-myeloid-primed progenitors, which lose myeloid and B cell potential. They either differentiate into innate lymphoid cells or migrate to the thymus to give rise to embryonic T cell receptor-invariant T cells. At later developmental stages, adaptive T lymphocytes are derived from lympho-myeloid progenitors that colonize the thymus, while lymphoid progenitors become specialized in the production of B cells. This sequence of events highlights the requirement for stratification in the establishment of immune functions that determine efficient seeding of peripheral tissues by a limited number of cells.


Subject(s)
B-Lymphocytes/immunology , Lymphocytes/physiology , Lymphoid Progenitor Cells/physiology , Natural Killer T-Cells/immunology , Thymus Gland/immunology , Animals , Cell Differentiation , Cell Lineage , Cellular Microenvironment , Cytokines/metabolism , Humans , Immunity, Innate , Lymphocyte Activation , Paracrine Communication , Transcriptome
20.
RNA ; 24(12): 1803-1812, 2018 12.
Article in English | MEDLINE | ID: mdl-30242063

ABSTRACT

The contribution of basal cellular processes to the regulation of tissue homeostasis has just started to be appreciated. However, our knowledge of the modulation of ribosome biogenesis activity in situ within specific lineages remains very limited. This is largely due to the lack of assays that enable quantitation of ribosome biogenesis in small numbers of cells in vivo. We used a technique, named Flow-FISH, combining cell surface antibody staining and flow cytometry with intracellular ribosomal RNA (rRNA) FISH, to measure the levels of pre-rRNAs of hematopoietic cells in vivo. Here, we show that Flow-FISH reports and quantifies ribosome biogenesis activity in hematopoietic cell populations, thereby providing original data on this fundamental process notably in rare populations such as hematopoietic stem and progenitor cells. We unravel variations in pre-rRNA levels between different hematopoietic progenitor compartments and during erythroid differentiation. In particular, our data indicate that, contrary to what may be anticipated from their quiescent state, hematopoietic stem cells have significant ribosome biogenesis activity. Moreover, variations in pre-rRNA levels do not correlate with proliferation rates, suggesting that cell type-specific mechanisms might regulate ribosome biogenesis in hematopoietic stem cells and progenitors. Our study contributes to a better understanding of the cellular physiology of the hematopoietic system in vivo in unperturbed situations.


Subject(s)
Hematopoietic Stem Cells/metabolism , RNA Processing, Post-Transcriptional/genetics , RNA, Ribosomal/biosynthesis , Ribosomes/genetics , Animals , Cell Differentiation/genetics , Mice , RNA Precursors/genetics , Ribosomal Proteins , Ribosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...