Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2529: 477-490, 2022.
Article in English | MEDLINE | ID: mdl-35733027

ABSTRACT

Potent and highly selective small-molecule inhibitors are needed to unravel the biological complexities of histone methyltransferases and to reveal their therapeutic potential. A prerequisite to developing these inhibitors is the identification of validated chemical matter for initiating a medicinal chemistry campaign. For the most part, finding these initial starting points occurs through screening of large, unbiased compound libraries. The size and nature of these libraries, coupled with the complexities of the bisubstrate utilizing histone methyltransferases, necessitates that the primary screen and subsequent hit triage be carefully considered.In this chapter, using EZH2 as a representative example, we describe a screening and hit triage campaign that identified validated chemical matter allowing initiation of medicinal chemistry studies. Moreover, we discuss a cell-based assay to support lead identification and optimization. The approach described here entailing a mixture of biochemical, biophysical and cell-based assays should be applicable to identifying validated starting points for other histone methyltransferases.


Subject(s)
Enzyme Inhibitors , Methyltransferases , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Histone Methyltransferases
2.
J Biol Chem ; 296: 100349, 2021.
Article in English | MEDLINE | ID: mdl-33524394

ABSTRACT

The histone methyltransferase EZH2 has been the target of numerous small-molecule inhibitor discovery efforts over the last 10+ years. Emerging clinical data have provided early evidence for single agent activity with acceptable safety profiles for first-generation inhibitors. We have developed kinetic methodologies for studying EZH2-inhibitor-binding kinetics that have allowed us to identify a unique structural modification that results in significant increases in the drug-target residence times of all EZH2 inhibitor scaffolds we have studied. The unexpected residence time enhancement bestowed by this modification has enabled us to create a series of second-generation EZH2 inhibitors with sub-pM binding affinities. We provide both biophysical evidence validating this sub-pM potency and biological evidence demonstrating the utility and relevance of such high-affinity interactions with EZH2.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Allosteric Regulation/drug effects , Animals , Drug Discovery , Enhancer of Zeste Homolog 2 Protein/metabolism , Female , HeLa Cells , Humans , Mice, SCID , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
3.
ACS Med Chem Lett ; 11(6): 1205-1212, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32551002

ABSTRACT

Histone methyltransferase EZH2, which is the catalytic subunit of the PRC2 complex, catalyzes the methylation of histone H3K27-a transcriptionally repressive post-translational modification (PTM). EZH2 is commonly mutated in hematologic malignancies and frequently overexpressed in solid tumors, where its expression level often correlates with poor prognosis. First generation EZH2 inhibitors are beginning to show clinical benefit, and we believe that a second generation EZH2 inhibitor could further build upon this foundation to fully realize the therapeutic potential of EZH2 inhibition. During our medicinal chemistry campaign, we identified 4-thiomethyl pyridone as a key modification that led to significantly increased potency and prolonged residence time. Leveraging this finding, we optimized a series of EZH2 inhibitors, with enhanced antitumor activity and improved physiochemical properties, which have the potential to expand the clinical use of EZH2 inhibition.

4.
ACS Med Chem Lett ; 11(6): 1213-1220, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32551003

ABSTRACT

Leveraging the catalytic machinery of LSD1 (KDM1A), a series of covalent styrenylcyclopropane LSD1 inhibitors were identified. These inhibitors represent a new class of mechanism-based inhibitors that target and covalently label the FAD cofactor of LSD1. The series was rapidly progressed to potent biochemical and cellular LSD1 inhibitors with good physical properties. This effort resulted in the identification of 34, a highly potent (<4 nM biochemical, 2 nM cell, and 1 nM GI50), and selective LSD1 inhibitor. In-depth kinetic profiling of 34 confirmed its covalent mechanism of action, validated the styrenylcyclopropane as an FAD-directed warhead, and demonstrated that the potency of this inhibitor is driven by improved non-covalent binding (K I). 34 demonstrated robust cell-killing activity in a panel of AML cell lines and robust antitumor activity in a Kasumi-1 xenograft model of AML when dosed orally at 1.5 mg/kg once daily.

5.
ACS Med Chem Lett ; 11(6): 1324-1329, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32551019

ABSTRACT

The histone acetyltransferases, CREB binding protein (CBP) and EP300, are master transcriptional co-regulators that have been implicated in numerous diseases, such as cancer, inflammatory disorders, and neurodegeneration. A novel, highly potent, orally bioavailable EP300/CBP histone acetyltransferase (HAT) inhibitor, CPI-1612 or 17, was developed from the lead compound 3. Replacement of the indole scaffold of 3 with the aminopyridine scaffold of 17 led to improvements in potency, solubility, and bioavailability. These characteristics resulted in a 20-fold lower efficacious dose for 17 relative to lead 3 in a JEKO-1 tumor mouse xenograft study.

6.
ACS Med Chem Lett ; 8(7): 737-741, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28740608

ABSTRACT

The biological function of bromodomains, epigenetic readers of acetylated lysine residues, remains largely unknown. Herein we report our efforts to discover a potent and selective inhibitor of the bromodomain of cat eye syndrome chromosome region candidate 2 (CECR2). Screening of our internal medicinal chemistry collection led to the identification of a pyrrolopyridone chemical lead, and subsequent structure-based drug design led to a potent and selective CECR2 bromodomain inhibitor (GNE-886) suitable for use as an in vitro tool compound.

7.
J Med Chem ; 59(21): 9928-9941, 2016 11 10.
Article in English | MEDLINE | ID: mdl-27739677

ABSTRACT

Polycomb repressive complex 2 (PRC2) has been shown to play a major role in transcriptional silencing in part by installing methylation marks on lysine 27 of histone 3. Dysregulation of PRC2 function correlates with certain malignancies and poor prognosis. EZH2 is the catalytic engine of the PRC2 complex and thus represents a key candidate oncology target for pharmacological intervention. Here we report the optimization of our indole-based EZH2 inhibitor series that led to the identification of CPI-1205, a highly potent (biochemical IC50 = 0.002 µM, cellular EC50 = 0.032 µM) and selective inhibitor of EZH2. This compound demonstrates robust antitumor effects in a Karpas-422 xenograft model when dosed at 160 mg/kg BID and is currently in Phase I clinical trials. Additionally, we disclose the co-crystal structure of our inhibitor series bound to the human PRC2 complex.


Subject(s)
Antineoplastic Agents/pharmacology , Clinical Trials, Phase I as Topic , Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Indoles/pharmacology , Lymphoma, B-Cell/drug therapy , Piperidines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dogs , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/metabolism , Humans , Indoles/chemical synthesis , Indoles/chemistry , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Piperidines/chemical synthesis , Piperidines/chemistry , Rats , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 26(18): 4492-4496, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27499454

ABSTRACT

Features from a high throughput screening (HTS) hit and a previously reported scaffold were combined to generate 1,7-naphthyridones as novel KDM5 enzyme inhibitors with nanomolar potencies. These molecules exhibited high selectivity over the related KDM4C and KDM2B isoforms. An X-ray co-crystal structure of a representative molecule bound to KDM5A showed that these inhibitors are competitive with the co-substrate (2-oxoglutarate or 2-OG).


Subject(s)
Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Naphthyridines/pharmacology , Nuclear Proteins/antagonists & inhibitors , Repressor Proteins/antagonists & inhibitors , Retinoblastoma-Binding Protein 2/antagonists & inhibitors , Animals , Crystallography, X-Ray , Dogs , Drug Design , Humans , Madin Darby Canine Kidney Cells , Naphthyridines/chemistry , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 26(17): 4350-4, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27476424

ABSTRACT

This communication describes the identification and optimization of a series of pan-KDM5 inhibitors derived from compound 1, a hit initially identified against KDM4C. Compound 1 was optimized to afford compound 20, a 10nM inhibitor of KDM5A. Compound 20 is highly selective for the KDM5 enzymes versus other histone lysine demethylases and demonstrates activity in a cellular assay measuring the increase in global histone 3 lysine 4 tri-methylation (H3K4me3). In addition compound 20 has good ADME properties, excellent mouse PK, and is a suitable starting point for further optimization.


Subject(s)
Enzyme Inhibitors/pharmacology , Retinoblastoma-Binding Protein 2/antagonists & inhibitors , Animals , Binding Sites , Blotting, Western , Cell Line , Drug Discovery , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Humans , Inhibitory Concentration 50 , Mice , Microsomes, Liver/enzymology , Models, Molecular , Rats
10.
Nat Chem Biol ; 12(7): 531-8, 2016 07.
Article in English | MEDLINE | ID: mdl-27214401

ABSTRACT

The KDM5 family of histone demethylases catalyzes the demethylation of histone H3 on lysine 4 (H3K4) and is required for the survival of drug-tolerant persister cancer cells (DTPs). Here we report the discovery and characterization of the specific KDM5 inhibitor CPI-455. The crystal structure of KDM5A revealed the mechanism of inhibition of CPI-455 as well as the topological arrangements of protein domains that influence substrate binding. CPI-455 mediated KDM5 inhibition, elevated global levels of H3K4 trimethylation (H3K4me3) and decreased the number of DTPs in multiple cancer cell line models treated with standard chemotherapy or targeted agents. These findings show that pretreatment of cancer cells with a KDM5-specific inhibitor results in the ablation of a subpopulation of cancer cells that can serve as the founders for therapeutic relapse.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Enzyme Inhibitors/pharmacology , Neoplasms/drug therapy , Neoplasms/pathology , Retinoblastoma-Binding Protein 2/antagonists & inhibitors , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Retinoblastoma-Binding Protein 2/metabolism , Structure-Activity Relationship
11.
ACS Med Chem Lett ; 7(5): 531-6, 2016 May 12.
Article in English | MEDLINE | ID: mdl-27190605

ABSTRACT

CBP and EP300 are highly homologous, bromodomain-containing transcription coactivators involved in numerous cellular pathways relevant to oncology. As part of our effort to explore the potential therapeutic implications of selectively targeting bromodomains, we set out to identify a CBP/EP300 bromodomain inhibitor that was potent both in vitro and in cellular target engagement assays and was selective over the other members of the bromodomain family. Reported here is a series of cell-potent and selective probes of the CBP/EP300 bromodomains, derived from the fragment screening hit 4-methyl-1,3,4,5-tetrahydro-2H-benzo[b][1,4]diazepin-2-one.

12.
J Biol Chem ; 291(25): 13014-27, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27056325

ABSTRACT

Covalent modification of histones is a fundamental mechanism of regulated gene expression in eukaryotes, and interpretation of histone modifications is an essential feature of epigenetic control. Bromodomains are specialized binding modules that interact with acetylated histones, linking chromatin recognition to gene transcription. Because of their ability to function in a domain-specific fashion, selective disruption of bromodomain:acetylated histone interactions with chemical probes serves as a powerful means for understanding biological processes regulated by these chromatin adaptors. Here we describe the discovery and characterization of potent and selective small molecule inhibitors for the bromodomains of CREBBP/EP300 that engage their target in cellular assays. We use these tools to demonstrate a critical role for CREBBP/EP300 bromodomains in regulatory T cell biology. Because regulatory T cell recruitment to tumors is a major mechanism of immune evasion by cancer cells, our data highlight the importance of CREBBP/EP300 bromodomain inhibition as a novel, small molecule-based approach for cancer immunotherapy.


Subject(s)
CREB-Binding Protein/antagonists & inhibitors , E1A-Associated p300 Protein/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , T-Lymphocytes, Regulatory/drug effects , Acetylation/drug effects , CREB-Binding Protein/chemistry , CREB-Binding Protein/metabolism , Cell Differentiation/drug effects , Cell Line , Cells, Cultured , E1A-Associated p300 Protein/chemistry , E1A-Associated p300 Protein/metabolism , Forkhead Transcription Factors/metabolism , Histones/metabolism , Humans , Molecular Docking Simulation , Protein Structure, Tertiary/drug effects , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism , Transcriptome/drug effects
13.
ACS Med Chem Lett ; 7(2): 145-50, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26985289

ABSTRACT

Inhibition of the bromodomains of the BET family, of which BRD4 is a member, has been shown to decrease myc and interleukin (IL) 6 in vivo, markers that are of therapeutic relevance to cancer and inflammatory disease, respectively. Herein we report substituted benzo[b]isoxazolo[4,5-d]azepines and benzotriazolo[4,3-d][1,4]diazepines as fragment-derived novel inhibitors of the bromodomain of BRD4. Compounds from these series were potent and selective in cells, and subsequent optimization of microsomal stability yielded representatives that demonstrated dose- and time-dependent reduction of plasma IL-6 in mice.

14.
J Med Chem ; 59(4): 1330-9, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26815195

ABSTRACT

In recent years, inhibition of the interaction between the bromodomain and extra-terminal domain (BET) family of chromatin adaptors and acetyl-lysine residues on chromatin has emerged as a promising approach to regulate the expression of important disease-relevant genes, including MYC, BCL-2, and NF-κB. Here we describe the identification and characterization of a potent and selective benzoisoxazoloazepine BET bromodomain inhibitor that attenuates BET-dependent gene expression in vivo, demonstrates antitumor efficacy in an MV-4-11 mouse xenograft model, and is currently undergoing human clinical trials for hematological malignancies (CPI-0610).


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Azepines/chemistry , Azepines/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Leukemia, Myeloid, Acute/drug therapy , Nuclear Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Azepines/pharmacokinetics , Azepines/pharmacology , Cell Cycle Proteins , Cell Line, Tumor , Clinical Trials as Topic , Dogs , Genes, myc/drug effects , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-myc/genetics , Rats , Transcription Factors/chemistry , Transcription Factors/metabolism , Xenograft Model Antitumor Assays
15.
Bioorg Med Chem Lett ; 25(17): 3644-9, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26189078

ABSTRACT

The discovery and optimization of a series of small molecule EZH2 inhibitors is described. Starting from dimethylpyridone HTS hit (2), a series of indole-based EZH2 inhibitors were identified. Biochemical potency and microsomal stability were optimized during these studies and afforded compound 22. This compound demonstrates nanomolar levels of biochemical potency (IC50=0.002 µM), cellular potency (EC50=0.080 µM), and afforded tumor regression when dosed (200 mpk SC BID) in an EZH2 dependent tumor xenograft model.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Indoles/chemistry , Polycomb Repressive Complex 2/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Chemistry Techniques, Synthetic , Drug Design , Drug Discovery , Drug Screening Assays, Antitumor , Drug Stability , Enhancer of Zeste Homolog 2 Protein , HeLa Cells/drug effects , Humans , Inhibitory Concentration 50 , Mice , Molecular Targeted Therapy/methods , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
16.
Chem Biol ; 21(11): 1463-75, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25457180

ABSTRACT

The histone lysine methyltransferase (MT) Enhancer of Zeste Homolog 2 (EZH2) is considered an oncogenic driver in a subset of germinal center B-cell-like diffuse large B cell lymphoma (GCB-DLBCL) and follicular lymphoma due to the presence of recurrent, monoallelic mutations in the EZH2 catalytic domain. These genomic data suggest that targeting the EZH2 MT activity is a valid therapeutic strategy for the treatment of lymphoma patients with EZH2 mutations. Here we report the identification of highly potent and selective EZH2 small molecule inhibitors, their validation by a cellular thermal shift assay, application across a large cell panel representing various non-Hodgkin's lymphoma (NHL) subtypes, and their efficacy in EZH2mutant-containing GCB-DLBCL xenograft models. Surprisingly, our EZH2 inhibitors selectively affect the turnover of trimethylated, but not monomethylated histone H3 lysine 27 at pharmacologically relevant doses. Importantly, we find that these inhibitors are broadly efficacious also in NHL models with wild-type EZH2.


Subject(s)
Apoptosis/drug effects , Enzyme Inhibitors/toxicity , Histones/metabolism , Polycomb Repressive Complex 2/antagonists & inhibitors , Small Molecule Libraries/toxicity , Amino Acid Sequence , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Histones/chemistry , Humans , Kinetics , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/pathology , Lymphoma, Non-Hodgkin/metabolism , Lymphoma, Non-Hodgkin/pathology , Methylation , Mice , Mice, Nude , Mutation , Peptides/analysis , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/therapeutic use , Transplantation, Heterologous
18.
J Lipid Res ; 52(1): 78-86, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20959675

ABSTRACT

Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) regulates LDL cholesterol levels by inhibiting LDL receptor (LDLr)-mediated cellular LDL uptake. We have identified a fragment antigen-binding (Fab) 1D05 which binds PCSK9 with nanomolar affinity. The fully human antibody 1D05-IgG2 completely blocks the inhibitory effects of wild-type PCSK9 and two gain-of-function human PCSK9 mutants, S127R and D374Y. The crystal structure of 1D05-Fab bound to PCSK9 reveals that 1D05-Fab binds to an epitope on the PCSK9 catalytic domain which includes the entire LDLr EGF(A) binding site. Notably, the 1D05-Fab CDR-H3 and CDR-H2 loops structurally mimic the EGF(A) domain of LDLr. In a transgenic mouse model (CETP/LDLr-hemi), in which plasma lipid and PCSK9 profiles are comparable to those of humans, 1D05-IgG2 reduces plasma LDL cholesterol to 40% and raises hepatic LDLr protein levels approximately fivefold. Similarly, in healthy rhesus monkeys, 1D05-IgG2 effectively reduced LDL cholesterol 20%-50% for over 2 weeks, despite its relatively short terminal half-life (t(1/2) = 3.2 days). Importantly, the decrease in circulating LDL cholesterol corresponds closely to the reduction in free PCSK9 levels. Together these results clearly demonstrate that the LDL-lowering effect of the neutralizing anti-PCSK9 1D05-IgG2 antibody is mediated by reducing the amount of PCSK9 that can bind to the LDLr.


Subject(s)
Cholesterol, LDL/blood , Immunoglobulin Fab Fragments/pharmacology , Receptors, LDL/chemistry , Serine Endopeptidases/immunology , Animals , Antibodies, Monoclonal/metabolism , Binding Sites , Cholesterol Ester Transfer Proteins/metabolism , Fluoroimmunoassay , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Macaca mulatta , Male , Mice , Mice, Transgenic , Proprotein Convertase 9 , Proprotein Convertases , Receptors, LDL/metabolism , Serine Endopeptidases/chemistry
19.
J Biol Chem ; 285(17): 12882-91, 2010 Apr 23.
Article in English | MEDLINE | ID: mdl-20172854

ABSTRACT

PCSK9 binds to the low density lipoprotein receptor (LDLR) and leads to LDLR degradation and inhibition of plasma LDL cholesterol clearance. Consequently, the role of PCSK9 in modulating circulating LDL makes it a promising therapeutic target for treating hypercholesterolemia and coronary heart disease. Although the C-terminal domain of PCSK9 is not involved in LDLR binding, the location of several naturally occurring mutations within this region suggests that it has an important role for PCSK9 function. Using a phage display library, we identified an anti-PCSK9 Fab (fragment antigen binding), 1G08, with subnanomolar affinity for PCSK9. In an assay measuring LDL uptake in HEK293 and HepG2 cells, 1G08 Fab reduced 50% the PCSK9-dependent inhibitory effects on LDL uptake. Importantly, we found that 1G08 did not affect the PCSK9-LDLR interaction but inhibited the internalization of PCSK9 in these cells. Furthermore, proteolysis and site-directed mutagenesis studies demonstrated that 1G08 Fab binds a region of beta-strands encompassing Arg-549, Arg-580, Arg-582, Glu-607, Lys-609, and Glu-612 in the PCSK9 C-terminal domain. Consistent with these results, 1G08 fails to bind PCSK9DeltaC, a truncated form of PCSK9 lacking the C-terminal domain. Additional studies revealed that lack of the C-terminal domain compromised the ability of PCSK9 to internalize into cells, and to inhibit LDL uptake. Together, the present study demonstrate that the PCSK9 C-terminal domain contribute to its inhibition of LDLR function mainly through its role in the cellular uptake of PCSK9 and LDLR complex. 1G08 Fab represents a useful new tool for delineating the mechanism of PCSK9 uptake and LDLR degradation.


Subject(s)
Antibodies, Monoclonal/pharmacology , Immunoglobulin Fab Fragments/pharmacology , Lipoproteins, LDL/metabolism , Receptors, LDL/metabolism , Serine Endopeptidases/metabolism , Amino Acid Substitution , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Hep G2 Cells , Humans , Hypercholesterolemia/drug therapy , Hypercholesterolemia/genetics , Hypercholesterolemia/immunology , Hypercholesterolemia/metabolism , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Lipoproteins, LDL/genetics , Lipoproteins, LDL/immunology , Mutagenesis, Site-Directed , Proprotein Convertase 9 , Proprotein Convertases , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, LDL/genetics , Receptors, LDL/immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology
20.
J Biol Chem ; 284(2): 1313-23, 2009 Jan 09.
Article in English | MEDLINE | ID: mdl-19001363

ABSTRACT

PCSK9 regulates low density lipoprotein receptor (LDLR) levels and consequently is a target for the prevention of atherosclerosis and coronary heart disease. Here we studied the interaction, of LDLR EGF(A/AB) repeats with PCSK9. We show that PCSK9 binds the EGF(AB) repeats in a pH-dependent manner. Although the PCSK9 C-terminal domain is not involved in LDLR binding, PCSK9 autocleavage is required. Moreover, we report the x-ray structure of the PCSK9DeltaC-EGF(AB) complex at neutral pH. Compared with the low pH PCSK9-EGF(A) structure, the new structure revealed rearrangement of the EGF(A) His-306 side chain and disruption of the salt bridge with PCSK9 Asp-374, thus suggesting the basis for enhanced interaction at low pH. In addition, the structure of PCSK9DeltaC bound to EGF(AB)(H306Y), a mutant associated with familial hypercholesterolemia (FH), reveals that the Tyr-306 side chain forms a hydrogen bond with PCSK9 Asp-374, thus mimicking His-306 in the low pH conformation. Consistently, Tyr-306 confers increased affinity for PCSK9. Importantly, we found that although the EGF(AB)(H306Y)-PCSK9 interaction is pH-independent, LDLR(H306Y) binds PCSK9 50-fold better at low pH, suggesting that factors other than His-306 contribute to the pH dependence of PCSK9-LDLR binding. Further, we determined the structures of EGF(AB) bound to PCSK9DeltaC containing the FH-associated D374Y and D374H mutations, revealing additional interactions with EGF(A) mediated by Tyr-374/His-374 and providing a rationale for their disease phenotypes. Finally, we report the inhibitory properties of EGF repeats in a cellular assay measuring LDL uptake.


Subject(s)
Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Amino Acid Sequence , Cell Line , Crystallography, X-Ray , Humans , Hyperlipoproteinemia Type II , Models, Molecular , Molecular Sequence Data , Mutation/genetics , Proprotein Convertase 9 , Proprotein Convertases , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Receptors, LDL/metabolism , Serine Endopeptidases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...