Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Beilstein J Org Chem ; 17: 2260-2269, 2021.
Article in English | MEDLINE | ID: mdl-34621389

ABSTRACT

The enzyme tyrosine kinase BCR-Abl-1 is the main molecular target in the treatment of chronic myeloid leukemia and can be competitively inhibited by tyrosine kinase inhibitors such as imatinib. New potential competitive inhibitors were synthesized using the (phenylamino)pyrimidine-pyridine (PAPP) group as a pharmacophoric fragment, and these compounds were biologically evaluated. The synthesis of twelve new compounds was performed in three steps and assisted by microwave irradiation in a 1,3-dipolar cycloaddition to obtain 1,2,3-triazole derivatives substituted on carbon C-4 of the triazole nucleus. All compounds were evaluated for their inhibitory activities against a chronic myeloid leukemia cell line (K562) that expresses the enzyme tyrosine kinase BCR-Abl-1 and against healthy cells (WSS-1) to observe their selectivity. Three compounds showed promising results, with IC50 values between 1.0 and 7.3 µM, and were subjected to molecular docking studies. The results suggest that such compounds can interact at the same binding site as imatinib, probably sharing a competitive inhibition mechanism. One compound showed the greatest interaction affinity for BCR-Abl-1 in the docking studies.

2.
Molecules ; 26(15)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34361566

ABSTRACT

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor clinical outcome, and currently no effective targeted therapies are available. Indole compounds have been shown to have potential antitumor activity against various cancer cells. In the present study, we found that new four benzo[f]indole-4,9-dione derivatives reduce TNBC cell viability by reactive oxygen species (ROS) accumulation stress in vitro. Further analyses showed that LACBio1, LACBio2, LACBio3 and LACBio4 exert cytotoxic effects on MDA-MB 231 cancer cell line by inducing the intrinsic apoptosis pathway, activating caspase 9 and Bax/Bcl-2 pathway in vitro. These results provide evidence that these new four benzo[f]indole-4,9-dione derivatives could be potential therapeutic agents against TNBC by promoting ROS stress-mediated apoptosis through intrinsic-pathway caspase activation.


Subject(s)
Antineoplastic Agents , Apoptosis/drug effects , Cytotoxins , Indoles , Triple Negative Breast Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Cytotoxins/pharmacology , Female , Humans , Indoles/chemical synthesis , Indoles/chemistry , Indoles/pharmacology , Triple Negative Breast Neoplasms/metabolism
3.
Life Sci ; 276: 119470, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33831423

ABSTRACT

AIMS: AMPK plays a critical role regulating cell metabolism, growth and survival. Interfering with this enzyme activity has been extensively studied as putative mechanism for cancer therapy. The present work aims to identify a specific AMPK activator for cancer cells among a series of novel heterocyclic compounds. MATERIALS AND METHODS: A series of novel hybrid heterocyclic compounds, namely naphtoquinone-4-oxoquinoline and isoquinoline-5,8-quinone-4-oxoquinoline derivatives, were synthesized via Michael reaction and their structures confirmed by spectral data: infrared; 1H and 13C NMR spectroscopy (COSY, HSQC, HMBC); and high-resolution mass spectrometry (HRMS). The novel compounds were screened and tested for antitumoral activity and have part of their mechanism of action scrutinized. KEY FINDINGS: Here, we identified a selective AMPK activator among the new hybrid heterocyclic compounds. This new compound presents selective cytotoxicity on breast cancer cells but not on non-cancer counterparts. We identified that by specifically activating AMPK in cancer cells, the drug downregulates unfolded protein response pathway, as well as inhibits mTOR signaling. SIGNIFICANCE: These effects, that are selective for cancer cells, lead to activation of autophagy and, ultimately, to cancer cells death. Taken together, our data support the promising anticancer activity of this novel compound which is a strong modulator of metabolism.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antineoplastic Agents/pharmacology , Apoptosis , Autophagy , Breast Neoplasms/drug therapy , Enzyme Activators/pharmacology , Unfolded Protein Response , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Signal Transduction , Tumor Cells, Cultured
4.
Curr Top Med Chem ; 20(3): 227-243, 2020.
Article in English | MEDLINE | ID: mdl-31976834

ABSTRACT

The phenylamino-pyrimidine (PAP) nucleus has been demonstrated to be useful for the development of new drugs and is present in a wide variety of antiretroviral agents and tyrosine kinase inhibitors (TKIs). This review aims to evaluate the application of PAP derivatives in drugs and other bioactive compounds. It was concluded that PAP derivatives are still worth exploring, as they may provide highly competitive ATP TKI's with nano/picomolar activity.


Subject(s)
Anti-Retroviral Agents/pharmacology , HIV-1/drug effects , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Aniline Compounds , Anti-Retroviral Agents/chemistry , Humans , Molecular Structure , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/metabolism , Pyrimidines
5.
Curr Top Med Chem ; 20(2): 132-139, 2020.
Article in English | MEDLINE | ID: mdl-31880262

ABSTRACT

BACKGROUND: Since the influenza virus is the main cause of acute seasonal respiratory infections and pandemic outbreaks, antiviral drugs are critical to mitigate infections and impair chain of transmission. Neuraminidase inhibitors (NAIs) are the main class of anti-influenza drugs in clinical use. Nevertheless, resistance to oseltamivir (OST), the most used NAI, has been detected in circulating strains of the influenza virus. Therefore, novel compounds with anti-influenza activity are necessary. OBJECTIVE: To verify whether the NA from influenza A and B virus is susceptible to the compound 4-(4- phenyl-1H-1,2,3-triazol-1-yl)-2,2,6,6-tetramethylpiperidine-1-oxyl (Tritempo). METHODS: Cell-free neuraminidase inhibition assays were performed with Tritempo, using wild-type (WT) and OST-resistant influenza strains. Cell-based assays in MDCKs were performed to confirm Tritempo`s antiviral activity and cytotoxicity. Multiple passages of the influenza virus in increasing concentrations of our compound, followed by the sequencing of NA gene and molecular docking, were used to identify our Tritempo's target. RESULTS AND DISCUSSION: Indeed, Tritempo inhibited the neuraminidase activity of WT and OSTresistant strains of influenza A and B, at the nanomolar range. Tritempo bound to WT and OST-resistant influenza NA isoforms at the sialic acid binding site with low free binding energies. Cell-free assays were confirmed using a prototypic influenza A infection assay in MDCK cells, in which we found an EC50 of 0.38 µM, along with very low cytotoxicity, CC50 > 2,000 µM. When we passaged the influenza A virus in the presence of Tritempo, a mutant virus with the G248P change in the NA was detected. This mutant was resistant to Tritempo but remained sensitive to OST, indicating no cross-resistance between the studied and reference drugs. CONCLUSION: Our results suggest that Tritempo's chemical structure is a promising one for the development of novel antivirals against influenza.


Subject(s)
Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Influenza A virus/drug effects , Influenza B virus/drug effects , Neuraminidase/antagonists & inhibitors , Piperidines/pharmacology , Thiazoles/pharmacology , Triazoles/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Survival/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Influenza A virus/enzymology , Influenza B virus/enzymology , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Neuraminidase/metabolism , Piperidines/chemical synthesis , Piperidines/chemistry , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry , Triazoles/chemical synthesis , Triazoles/chemistry
6.
Curr Top Med Chem ; 20(3): 192-208, 2020.
Article in English | MEDLINE | ID: mdl-31868148

ABSTRACT

BACKGROUND: According to the World Health Organization, antimicrobial resistance is one of the most important public health threats of the 21st century. Therefore, there is an urgent need for the development of antimicrobial agents with new mechanism of action, especially those capable of evading known resistance mechanisms. OBJECTIVE: We described the synthesis, in vitro antimicrobial evaluation, and in silico analysis of a series of 1H-indole-4,7-dione derivatives. METHODS: The new series of 1H-indole-4,7-diones was prepared with good yield by using a copper(II)- mediated reaction between bromoquinone and ß-enamino ketones bearing alkyl or phenyl groups attached to the nitrogen atom. The antimicrobial potential of indole derivatives was assessed. Molecular docking studies were also performed using AutoDock 4.2 for Windows. Characterization of all compounds was confirmed by one- and two-dimensional NMR techniques 1H and 13C NMR spectra [1H, 13C - APT, 1H x 1H - COSY, HSQC and HMBC], IR and mass spectrometry analysis. RESULTS: Several indolequinone compounds showed effective antimicrobial profile against Grampositive (MIC = 16 µg.mL-1) and Gram-negative bacteria (MIC = 8 µg.mL-1) similar to antimicrobials current on the market. The 3-acetyl-1-(2,5-dimethylphenyl)-1H-indole-4,7-dione derivative exhibited an important effect against different biofilm stages formed by a serious hospital life-threatening resistant strain of Methicillin-Resistant Staphylococcus aureus (MRSA). A hemocompatibility profile analysis based on in vitro hemolysis assays revealed the low toxicity effects of this new series. Indeed, in silico studies showed a good pharmacokinetics and toxicological profiles for all indolequinone derivatives, reinforcing their feasibility to display a promising oral bioavailability. An elucidation of the promising indolequinone derivatives binding mode was achieved, showing interactions with important sites to biological activity of S. aureus DNA gyrase. These results highlighted 3-acetyl-1-(2-hydroxyethyl)-1Hindole- 4,7-dione derivative as broad-spectrum antimicrobial prototype to be further explored for treating bacterial infections. CONCLUSION: The highly substituted indolequinones were obtained in moderate to good yields. The pharmacological study indicated that these compounds should be exploited in the search for a leading substance in a project aimed at obtaining new antimicrobials effective against Gram-negative bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Infections/drug therapy , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Indolequinones/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Humans , Indolequinones/chemical synthesis , Indolequinones/chemistry , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure
7.
Inorg Chem ; 53(14): 7508-17, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24964044

ABSTRACT

In this work we report the synthesis, crystal structures, and magnetic behavior of 2p-3d-4f heterospin systems containing the nitroxide radical 4-azido-2,2,6,6-tetramethylpiperidine-1-oxyl radical (N3tempo). These compounds were synthesized through a one-pot reaction by using [Cu(hfac)2], [Ln(hfac)3] (hfac = hexafluoroacetylacetonate, Ln = Dy(III), Tb(III) or Gd(III)), and the N3tempo radical. Depending on the stoichiometric ratio used, the synthesis leads to penta- or trimetallic compounds, with molecular formulas [Cu3Ln2(hfac)8(OH)4(N3tempo)] (Ln = Gd, Tb, Dy) and [CuLn2(hfac)8(N3tempo)2(H2O)2] (Ln = Gd, Dy). The magnetic properties of all compounds were investigated by direct current (dc) and alternating current (ac) measurements. The ac magnetic susceptibility measurements of Tb(III)- and Dy(III)-containing compounds of both families revealed slow relaxation of the magnetization, with magnetic quantum tunneling in zero field.

8.
Curr Microbiol ; 69(3): 357-64, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24807624

ABSTRACT

Bacterial multiresistance is a health problem worldwide that demands new antimicrobials for treating bacterial-related infections. In this study, we evaluated the antimicrobial activity and the theoretical toxicology profile of N-substituted-phenylamino-5-methyl-1H-1,2,3-triazole-4-carbohydrazide derivatives against gram-positive and gram-negative bacteria clinical strains. On that purpose we determined the minimum inhibitory (MIC) and bactericidal (MBC) concentrations, the in vitro cytotoxicity, and in silico risk profiles, also comparing with antimicrobial agents of clinical use. Among the 16 derivatives analyzed, four nitrofurans (N-H-FUR-NO(2), N-Br-FUR-NO(2), N-F-FUR-NO(2), N-Cl-FUR-NO(2)) showed promising MIC and MBC values (MIC = MBC = 1-16 µg/mL). The experimental data revealed the potential of these derivatives, which were comparable to the current antimicrobials with similar bactericidal and bacteriostatic profiles. Therefore, these molecules may be feasible options to be explored for treating infections caused by multiresistant strains. Our in vitro and in silico toxicity reinforced these results as these derivatives presented low cytotoxicity against human macrophages and low theoretical risk profile for irritant and reproductive effects compared to the current antimicrobials (e.g., vancomycin and ciprofloxacin). The molecular modeling analysis also revealed positive values for their theoretical druglikeness and drugscore. The presence of a 5-nitro-2-furfur-2-yl group seems to be essential for the antimicrobial activity, which pointed these acylhydrazone derivatives as promising for designing more potent and safer compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Hydrazones/pharmacology , Bacterial Infections/microbiology , Cell Survival/drug effects , Cells, Cultured , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacteria/isolation & purification , Gram-Positive Bacteria/isolation & purification , Humans , Macrophages/drug effects , Microbial Sensitivity Tests , Microbial Viability/drug effects
9.
Curr HIV Res ; 7(3): 327-35, 2009 May.
Article in English | MEDLINE | ID: mdl-19442130

ABSTRACT

We recently described that the chloroxoquinolinic ribonucleoside 6-chloro-1,4-dihydro-4-oxo-1-(beta-D-ribofuranosyl) quinoline-3-carboxylic acid (compound A) inhibits the human immunodeficiency virus type 1 (HIV-1) enzyme reverse transcriptase (RT), and its replication in primary cells. Based on these findings, we performed kinetic studies to investigate the mode of inhibition of compound A and its aglycan analog (compound B). We found that both molecules inhibited RT activity independently of the template/primer used. Nevertheless, compound A was 10-fold more potent than compound B. Compound A inhibited the RNA-dependent DNA polymerase (RDDP) activity of RT with an uncompetitive and a noncompetitive mode of action with respect to dTTP incorporation and to template/primer (TP) uptake, respectively. The kinetic pattern of the inhibition displayed by compound A was probably due to its greater affinity for the ternary complex (RT-TP-dNTP) than the enzyme alone or the binary complex (RT-TP). Besides, by means of molecular modeling, we show that compound A bound on the NNRTI binding pocket of RT. However, our molecule targets such a site by making novel interactions with the enzyme RT, when compared to NNRTIs. These include a hydrogen bridge between the 2'-OH of our compound and the Tyr675 of the enzyme RT's chain B. Therefore, compound A is able to synergize with both a NRTI (AZT-TP) and a NNRTI (efavirenz). Taken together, our results suggest that compound A displays a novel mechanism of action, which may be different from classical NRTIs and NNRTIs.


Subject(s)
HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/drug effects , Quinolines/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Ribonucleosides/pharmacology , Binding Sites , Computer Simulation , Humans , Kinetics , Models, Molecular , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL