Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Physiol (Oxf) ; 219(2): 441-452, 2017 02.
Article in English | MEDLINE | ID: mdl-27096875

ABSTRACT

AIM: Maintenance of the blood and extracellular volume requires tight control of endothelial macromolecule permeability, which is regulated by cAMP signalling. This study probes the role of the cAMP mediators rap guanine nucleotide exchange factor 3 and 4 (Epac1 and Epac2) for in vivo control of microvascular macromolecule permeability under basal conditions. METHODS: Epac1-/- and Epac2-/- C57BL/6J mice were produced and compared with wild-type mice for transvascular flux of radio-labelled albumin in skin, adipose tissue, intestine, heart and skeletal muscle. The transvascular leakage was also studied by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using the MRI contrast agent Gadomer-17 as probe. RESULTS: Epac1-/- mice had constitutively increased transvascular macromolecule transport, indicating Epac1-dependent restriction of baseline permeability. In addition, Epac1-/- mice showed little or no enhancement of vascular permeability in response to atrial natriuretic peptide (ANP), whether probed with labelled albumin or Gadomer-17. Epac2-/- and wild-type mice had similar basal and ANP-stimulated clearances. Ultrastructure analysis revealed that Epac1-/- microvascular interendothelial junctions had constitutively less junctional complex. CONCLUSION: Epac1 exerts a tonic inhibition of in vivo basal microvascular permeability. The loss of this tonic action increases baseline permeability, presumably by reducing the interendothelial permeability resistance. Part of the action of ANP to increase permeability in wild-type microvessels may involve inhibition of the basal Epac1-dependent activity.


Subject(s)
Capillary Permeability/physiology , Guanine Nucleotide Exchange Factors/metabolism , Animals , Blotting, Western , Disease Models, Animal , Female , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission
2.
Acta Physiol (Oxf) ; 207(4): 628-49, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23374222

ABSTRACT

Our major theme is that the layered structure of the endothelial barrier requires continuous activation of signalling pathways regulated by sphingosine-1-phosphate (S1P) and intracellular cAMP. These pathways modulate the adherens junction, continuity of tight junction strands, and the balance of synthesis and degradation of glycocalyx components. We evaluate recent evidence that baseline permeability is maintained by constant activity of mechanisms involving the small GTPases Rap1 and Rac1. In the basal state, the barrier is compromised when activities of the small GTPases are reduced by low S1P supply or delivery. With inflammatory stimulus, increased permeability can be understood in part as the action of signalling to reduce Rap1 and Rac1 activation. With the hypothesis that microvessel permeability and selectivity under both normal and inflammatory conditions are regulated by mechanisms that are continuously active, it follows that when S1P or intracellular cAMP are elevated at the time of inflammatory stimulus, they can buffer changes induced by inflammatory agents and maintain normal barrier stability. When endothelium is exposed to inflammatory conditions and subsequently exposed to elevated S1P or intracellular cAMP, the same processes restore the functional barrier by first re-establishing the adherens junction, then modulating tight junctions and glycocalyx. In more extreme inflammatory conditions, loss of the inhibitory actions of Rac1-dependent mechanisms may promote expression of more inflammatory endothelial phenotypes by contributing to the up-regulation of RhoA-dependent contractile mechanisms and the sustained loss of surface glycocalyx allowing access of inflammatory cells to the endothelium.


Subject(s)
Blood Vessels/physiology , Capillary Permeability/physiology , Signal Transduction/physiology , Animals , Blood Vessels/cytology , Cell Membrane Permeability/physiology , Endothelium, Vascular/cytology , Endothelium, Vascular/physiology , Humans , Mice , Microvessels/cytology , Microvessels/physiology , Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...