Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Nat Commun ; 15(1): 7908, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256401

ABSTRACT

Borna disease virus 1 (BoDV-1) is the causative agent of Borna disease, a fatal neurologic disorder of domestic mammals and humans, resulting from spill-over infection from its natural reservoir host, the bicolored white-toothed shrew (Crocidura leucodon). The known BoDV-1-endemic area is remarkably restricted to parts of Germany, Austria, Switzerland and Liechtenstein. To gain comprehensive data on its occurrence, we analysed diagnostic material from suspected BoDV-1-induced encephalitis cases based on clinical and/or histopathological diagnosis. BoDV-1 infection was confirmed by RT-qPCR in 207 domestic mammals, 28 humans and seven wild shrews. Thereby, this study markedly raises the number of published laboratory-confirmed human BoDV-1 infections and provides a first comprehensive summary. Generation of 136 new BoDV-1 genome sequences from animals and humans facilitated an in-depth phylogeographic analysis, allowing for the definition of risk areas for zoonotic BoDV-1 transmission and facilitating the assessment of geographical infection sources. Consistent with the low mobility of its reservoir host, BoDV-1 sequences showed a remarkable geographic association, with individual phylogenetic clades occupying distinct areas. The closest genetic relatives of most human-derived BoDV-1 sequences were located at distances of less than 40 km, indicating that spill-over transmission from the natural reservoir usually occurs in the patient´s home region.


Subject(s)
Borna Disease , Borna disease virus , Molecular Epidemiology , Phylogeny , Phylogeography , Shrews , Animals , Borna disease virus/genetics , Borna disease virus/physiology , Humans , Borna Disease/epidemiology , Borna Disease/virology , Shrews/virology , Female , Male , Germany/epidemiology , Disease Reservoirs/virology , Genome, Viral/genetics , Austria/epidemiology , Zoonoses/epidemiology , Zoonoses/virology , Zoonoses/transmission , Switzerland/epidemiology , Adult , Middle Aged
2.
Emerg Infect Dis ; 30(9): 1939-1943, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39174033

ABSTRACT

Using participatory, virologic, and wastewater surveillance systems, we estimated when and to what extent reported data of adult COVID-19 cases underestimated COVID-19 incidence in Germany. We also examined how case underestimation evolved over time. Our findings highlight how community-based surveillance systems can complement official notification systems for respiratory disease dynamics.


Subject(s)
COVID-19 , SARS-CoV-2 , Wastewater , Humans , COVID-19/epidemiology , Germany/epidemiology , Incidence , Wastewater/virology , SARS-CoV-2/genetics , Wastewater-Based Epidemiological Monitoring , Adult , Population Surveillance
3.
Influenza Other Respir Viruses ; 18(8): e13360, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39145535

ABSTRACT

We conducted a multicentre test-negative case-control study covering the period from October 2023 to January 2024 among adult patients aged ≥ 18 years hospitalised with severe acute respiratory infection in Europe. We provide early estimates of the effectiveness of the newly adapted XBB.1.5 COVID-19 vaccines against PCR-confirmed SARS-CoV-2 hospitalisation. Vaccine effectiveness was 49% overall, ranging between 69% at 14-29 days and 40% at 60-105 days post vaccination. The adapted XBB.1.5 COVID-19 vaccines conferred protection against COVID-19 hospitalisation in the first 3.5 months post vaccination, with VE > 70% in older adults (≥ 65 years) up to 1 month post vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Hospitalization , SARS-CoV-2 , Vaccination , Vaccine Efficacy , Humans , Hospitalization/statistics & numerical data , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Aged , Europe/epidemiology , Female , Male , Middle Aged , Adult , Case-Control Studies , SARS-CoV-2/immunology , Vaccine Efficacy/statistics & numerical data , Vaccination/statistics & numerical data , Young Adult , Aged, 80 and over , Adolescent
5.
JAMA Netw Open ; 7(7): e2419258, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949812

ABSTRACT

Importance: In the context of emerging SARS-CoV-2 variants or lineages and new vaccines, it is key to accurately monitor COVID-19 vaccine effectiveness (CVE) to inform vaccination campaigns. Objective: To estimate the effectiveness of COVID-19 vaccines administered in autumn and winter 2022 to 2023 against symptomatic SARS-CoV-2 infection (with all circulating viruses and XBB lineage in particular) among people aged 60 years or older in Europe, and to compare different CVE approaches across the exposed and reference groups used. Design, Setting, and Participants: This case-control study obtained data from VEBIS (Vaccine Effectiveness, Burden and Impact Studies), a multicenter study that collects COVID-19 and influenza data from 11 European sites: Croatia; France; Germany; Hungary; Ireland; Portugal; the Netherlands; Romania; Spain, national; Spain, Navarre region; and Sweden. Participants were primary care patients aged 60 years or older with acute respiratory infection symptoms who were recruited at the 11 sites after the start of the COVID-19 vaccination campaign from September 2022 to August 2023. Cases and controls were defined as patients with positive and negative, respectively, reverse transcription-polymerase chain reaction (RT-PCR) test results. Exposures: The exposure was COVID-19 vaccination. The exposure group consisted of patients who received a COVID-19 vaccine during the autumn and winter 2022 to 2023 vaccination campaign and 14 days or more before symptom onset. Reference group included patients who were not vaccinated during or in the 6 months before the 2022 to 2023 campaign (seasonal CVE), those who were never vaccinated (absolute CVE), and those who were vaccinated with at least the primary series 6 months or more before the campaign (relative CVE). For relative CVE of second boosters, patients receiving their second booster during the campaign were compared with those receiving 1 booster 6 months or more before the campaign. Main Outcomes and Measures: The outcome was RT-PCR-confirmed, medically attended, symptomatic SARS-CoV-2 infection. Four CVE estimates were generated: seasonal, absolute, relative, and relative of second boosters. CVE was estimated using logistic regression, adjusting for study site, symptom onset date, age, chronic condition, and sex. Results: A total of 9308 primary care patients were included, with 1687 cases (1035 females; median [IQR] age, 71 [65-79] years) and 7621 controls (4619 females [61%]; median [IQR] age, 71 [65-78] years). Within 14 to 89 days after vaccination, seasonal CVE was 29% (95% CI, 14%-42%), absolute CVE was 39% (95% CI, 6%-60%), relative CVE was 31% (95% CI, 15% to 44%), and relative CVE of second boosters was 34% (95% CI, 18%-47%) against all SARS-CoV-2 variants. In the same interval, seasonal CVE was 44% (95% CI, -10% to 75%), absolute CVE was 52% (95% CI, -23% to 82%), relative CVE was 47% (95% CI, -8% to 77%), and relative CVE of second boosters was 46% (95% CI, -13% to 77%) during a period of high XBB circulation. Estimates decreased with time since vaccination, with no protection from 180 days after vaccination. Conclusions and Relevance: In this case-control study among older Europeans, all CVE approaches suggested that COVID-19 vaccines administered in autumn and winter 2022 to 2023 offered at least 3 months of protection against symptomatic, medically attended, laboratory-confirmed SARS-CoV-2 infection. The effectiveness of new COVID-19 vaccines against emerging SARS-CoV-2 variants should be continually monitored using CVE seasonal approaches.


Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Seasons , Vaccine Efficacy , Humans , Aged , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/therapeutic use , Female , Europe/epidemiology , Male , SARS-CoV-2/immunology , Middle Aged , Case-Control Studies , Aged, 80 and over , Vaccination/statistics & numerical data , European People
6.
Viruses ; 16(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39066271

ABSTRACT

The unexpected emergence of oseltamivir-resistant A(H1N1) viruses in 2008 was facilitated in part by the establishment of permissive secondary neuraminidase (NA) substitutions that compensated for the fitness loss due to the NA-H275Y resistance substitution. These viruses were replaced in 2009 by oseltamivir-susceptible A(H1N1)pdm09 influenza viruses. Genetic analysis and screening of A(H1N1)pdm09 viruses circulating in Germany between 2009 and 2024 were conducted to identify any potentially synergistic or resistance-associated NA substitutions. Selected viruses were then subjected to further characterization in vitro. In the NA gene of circulating A(H1N1)pdm09 viruses, two secondary substitutions, NA-V241I and NA-N369K, were identified. These substitutions demonstrated a stable lineage in phylogenetic analysis since the 2010-2011 influenza season. The data indicate a slight increase in viral NA bearing two additional potentially synergistic substitutions, NA-I223V and NA-S247N, in the 2023-2024 season, which both result in a slight reduction in susceptibility to NA inhibitors. The accumulation of secondary synergistic substitutions in the NA of A(H1N1)pdm09 viruses increases the probability of the emergence of antiviral-resistant viruses. Therefore, it is crucial to closely monitor the evolution of circulating influenza viruses and to develop additional antiviral drugs against different target proteins.


Subject(s)
Antiviral Agents , Drug Resistance, Viral , Evolution, Molecular , Influenza A Virus, H1N1 Subtype , Influenza, Human , Mutation , Neuraminidase , Oseltamivir , Phylogeny , Viral Proteins , Neuraminidase/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/enzymology , Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Humans , Influenza, Human/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Oseltamivir/pharmacology , Germany , Amino Acid Substitution , Animals , Dogs
7.
Vaccine ; 42(19): 3931-3937, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38839521

ABSTRACT

In autumn 2023, European vaccination campaigns predominantly administered XBB.1.5 vaccine. In a European multicentre study, we estimated 2023 COVID-19 vaccine effectiveness (VE) against laboratory-confirmed symptomatic infection at primary care level between September 2023 and January 2024. Using a test-negative case-control design, we estimated VE in the target group for COVID-19 vaccination overall and by time since vaccination. We included 1057 cases and 4397 controls. Vaccine effectiveness was 40 % (95 % CI: 26-53 %) overall, 48 % (95 % CI: 31-61 %) among those vaccinated < 6 weeks of onset and 29 % (95 % CI: 3-49 %) at 6-14 weeks. Our results suggest that COVID-19 vaccines administered to target groups during the autumn 2023 campaigns showed clinically significant effectiveness against laboratory-confirmed, medically attended symptomatic SARS-CoV-2 infection in the 3 months following vaccination. A longer study period will allow for further variant-specific COVID-19 VE estimates, better understanding decline in VE and informing booster administration policies.


Subject(s)
COVID-19 Vaccines , COVID-19 , Primary Health Care , SARS-CoV-2 , Vaccine Efficacy , Humans , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Europe/epidemiology , Female , Male , Middle Aged , Adult , SARS-CoV-2/immunology , Case-Control Studies , Aged , Young Adult , Adolescent , Vaccination/methods , Vaccination/statistics & numerical data , Immunization Programs
10.
Vaccine ; 42(16): 3547-3554, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38704257

ABSTRACT

BACKGROUND: Within influenza vaccine effectiveness (VE) studies at primary care level with a laboratory-confirmed outcome, clinical case definitions for recruitment of patients can vary. We used the 2022-23 VEBIS primary care European multicentre study end-of-season data to evaluate whether the clinical case definition affected IVE estimates. METHODS: We estimated VE using a multicentre test-negative case-control design. We measured VE against any influenza and influenza (sub)types, by age group (0-14, 15-64, ≥65 years) and by influenza vaccine target group, using logistic regression. We estimated IVE among patients meeting the European Union (EU) acute respiratory infection (ARI) case definition and among those meeting the EU influenza-like illness (ILI) case definition, including only sites providing information on specific symptoms and recruiting patients using an ARI case definition (as the EU ILI case definition is a subset of the EU ARI one). RESULTS: We included 24 319 patients meeting the EU ARI case definition, of whom 21 804 patients (90 %) meet the EU ILI case definition, for the overall pooled VE analysis against any influenza. The overall and influenza (sub)type-specific VE varied by ≤2 % between EU ILI and EU ARI populations. DISCUSSION: Among all analyses, we found similar VE estimates between the EU ILI and EU ARI populations, with few (10%) additional non-ILI ARI patients recruited. These results indicate that VE in the 2022-23 influenza season was not affected by use of a different clinical case definition for recruitment, although we recommend investigating whether this holds true for next seasons.


Subject(s)
Influenza Vaccines , Influenza, Human , Primary Health Care , Vaccine Efficacy , Humans , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Influenza, Human/diagnosis , Primary Health Care/statistics & numerical data , Adolescent , Europe/epidemiology , Adult , Middle Aged , Female , Aged , Male , Child, Preschool , Child , Young Adult , Case-Control Studies , Infant , Seasons , Infant, Newborn , Vaccination/statistics & numerical data , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/prevention & control
11.
Euro Surveill ; 29(13)2024 Mar.
Article in English | MEDLINE | ID: mdl-38551095

ABSTRACT

BackgroundScarce European data in early 2021 suggested lower vaccine effectiveness (VE) against SARS-CoV-2 Omicron lineages than previous variants.AimWe aimed to estimate primary series (PS) and first booster VE against symptomatic BA.1/BA.2 infection and investigate potential biases.MethodsThis European test-negative multicentre study tested primary care patients with acute respiratory symptoms for SARS-CoV-2 in the BA.1/BA.2-dominant period. We estimated PS and booster VE among adults and adolescents (PS only) for all products combined and for Comirnaty alone, by time since vaccination, age and chronic condition. We investigated potential bias due to correlation between COVID-19 and influenza vaccination and explored effect modification and confounding by prior SARS-CoV-2 infection.ResultsAmong adults, PS VE was 37% (95% CI: 24-47%) overall and 60% (95% CI: 44-72%), 43% (95% CI: 26-55%) and 29% (95% CI: 13-43%) < 90, 90-179 and ≥ 180 days post vaccination, respectively. Booster VE was 42% (95% CI: 32-51%) overall and 56% (95% CI: 47-64%), 22% (95% CI: 2-38%) and 3% (95% CI: -78% to 48%), respectively. Primary series VE was similar among adolescents. Restricting analyses to Comirnaty had little impact. Vaccine effectiveness was higher among older adults. There was no signal of bias due to correlation between COVID-19 and influenza vaccination. Confounding by previous infection was low, but sample size precluded definite assessment of effect modification.ConclusionPrimary series and booster VE against symptomatic infection with BA.1/BA.2 ranged from 37% to 42%, with similar waning post vaccination. Comprehensive data on previous SARS-CoV-2 infection would help disentangle vaccine- and infection-induced immunity.


Subject(s)
COVID-19 , Influenza, Human , Humans , Adolescent , Aged , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , BNT162 Vaccine , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Vaccine Efficacy , Europe/epidemiology , Primary Health Care
12.
Euro Surveill ; 29(13)2024 Mar.
Article in English | MEDLINE | ID: mdl-38551098

ABSTRACT

BackgroundNon-pharmaceutical interventions (NPIs) during the COVID-19 pandemic affected respiratory syncytial virus (RSV) circulation worldwide.AimTo describe, for children aged < 5 years, the 2021 and 2022/23 RSV seasons in Germany.MethodsThrough data and 16,754 specimens from outpatient sentinel surveillance, we investigated RSV seasonality, circulating lineages, and affected children's age distributions in 2021 and 2022/23. Available information about disease severity from hospital surveillance was analysed for patients with RSV-specific diagnosis codes (n = 13,104). Differences between RSV seasons were assessed by chi-squared test and age distributions trends by Mann-Kendall test.ResultsRSV seasonality was irregular in 2021 (weeks 35-50) and 2022/23 (weeks 41-3) compared to pre-COVID-19 2011/12-2019/20 seasons (median weeks 51-12). RSV positivity rates (RSV-PR) were higher in 2021 (40% (522/1,291); p < 0.001) and 2022/23 (30% (299/990); p = 0.005) than in prior seasons (26% (1,430/5,511)). Known globally circulating RSV-A (lineages GA2.3.5 and GA2.3.6b) and RSV-B (lineage GB5.0.5a) strains, respectively, dominated in 2021 and 2022/23. In 2021, RSV-PRs were similar in 1 - < 2, 2 - < 3, 3 - < 4, and 4 - < 5-year-olds. RSV hospitalisation incidence in 2021 (1,114/100,000, p < 0.001) and in 2022/23 (1,034/100,000, p < 0.001) was approximately double that of previous seasons' average (2014/15-2019/20: 584/100,000). In 2022/23, proportions of RSV patients admitted to intensive care units rose (8.5% (206/2,413)) relative to pre-COVID-19 seasons (6.8% (551/8,114); p = 0.004), as did those needing ventilator support (6.1% (146/2,413) vs 3.8% (310/8,114); p < 0.001).ConclusionsHigh RSV-infection risk in 2-4-year-olds in 2021 and increased disease severity in 2022/23 possibly result from lower baseline population immunity, after NPIs diminished exposure to RSV.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Child , Humans , Infant , Child, Preschool , Respiratory Syncytial Virus Infections/diagnosis , Seasons , Age Distribution , Pandemics , Respiratory Tract Infections/epidemiology , COVID-19/epidemiology , Germany/epidemiology , Patient Acuity
13.
Influenza Other Respir Viruses ; 18(2): e13255, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403302

ABSTRACT

We conducted a multicentre hospital-based test-negative case-control study to measure vaccine effectiveness (VE) against PCR-confirmed influenza in adult patients with severe acute respiratory infection (SARI) during the 2022/2023 influenza season in Europe. Among 5547 SARI patients ≥18 years, 2963 (53%) were vaccinated against influenza. Overall VE against influenza A(H1N1)pdm09 was 11% (95% CI: -23-36); 20% (95% CI: -4-39) against A(H3N2) and 56% (95% CI: 22-75) against B. During the 2022/2023 season, while VE against hospitalisation with influenza B was >55%, it was ≤20% for influenza A subtypes. While influenza vaccination should be a priority for future seasons, improved vaccines against influenza are needed.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Pneumonia , Adult , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Case-Control Studies , Vaccine Efficacy , Europe/epidemiology , Hospitalization , Hospitals , Vaccination
14.
J Clin Microbiol ; 62(3): e0111123, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38407068

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections causing significant morbidity and mortality among children and the elderly; two RSV vaccines and a monoclonal antibody have recently been approved. Thus, there is an increasing need for a detailed and continuous genomic surveillance of RSV circulating in resource-rich and resource-limited settings worldwide. However, robust, cost-effective methods for whole genome sequencing of RSV from clinical samples that are amenable to high-throughput are still scarce. We developed Next-RSV-SEQ, an experimental and computational pipeline to generate whole genome sequences of historic and current RSV genotypes by in-solution hybridization capture-based next generation sequencing. We optimized this workflow by automating library preparation and pooling libraries prior to enrichment in order to reduce hands-on time and cost, thereby augmenting scalability. Next-RSV-SEQ yielded near-complete to complete genome sequences for 98% of specimens with Cp values ≤31, at median on-target reads >93%, and mean coverage depths between ~1,000 and >5,000, depending on viral load. Whole genomes were successfully recovered from samples with viral loads as low as 230 copies per microliter RNA. We demonstrate that the method can be expanded to other respiratory viruses like parainfluenza virus and human metapneumovirus. Next-RSV-SEQ produces high-quality RSV genomes directly from culture isolates and, more importantly, clinical specimens of all genotypes in circulation. It is cost-efficient, scalable, and can be extended to other respiratory viruses, thereby opening new perspectives for a future effective and broad genomic surveillance of respiratory viruses. IMPORTANCE: Respiratory syncytial virus (RSV) is a leading cause of severe acute respiratory tract infections in children and the elderly, and its prevention has become an increasing priority. Recently, vaccines and a long-acting monoclonal antibody to protect effectively against severe disease have been approved for the first time. Hence, there is an urgent need for genomic surveillance of RSV at the global scale to monitor virus evolution, especially with an eye toward immune evasion. However, robust, cost-effective methods for RSV whole genome sequencing that are suitable for high-throughput of clinical samples are currently scarce. Therefore, we have developed Next-RSV-SEQ, an experimental and computational pipeline that produces reliably high-quality RSV genomes directly from clinical specimens and isolates.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Child , Humans , Aged , Respiratory Syncytial Virus, Human/genetics , High-Throughput Nucleotide Sequencing , Whole Genome Sequencing , Antibodies, Monoclonal
15.
Euro Surveill ; 29(8)2024 Feb.
Article in English | MEDLINE | ID: mdl-38390651

ABSTRACT

Influenza A viruses circulated in Europe from September 2023 to January 2024, with influenza A(H1N1)pdm09 predominance. We provide interim 2023/24 influenza vaccine effectiveness (IVE) estimates from two European studies, covering 10 countries across primary care (EU-PC) and hospital (EU-H) settings. Interim IVE was higher against A(H1N1)pdm09 than A(H3N2): EU-PC influenza A(H1N1)pdm09 IVE was 53% (95% CI: 41 to 63) and 30% (95% CI: -3 to 54) against influenza A(H3N2). For EU-H, these were 44% (95% CI: 30 to 55) and 14% (95% CI: -32 to 43), respectively.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza B virus , Influenza A Virus, H3N2 Subtype , Vaccination , Case-Control Studies , Seasons , Hospitals , Primary Health Care
16.
Influenza Other Respir Viruses ; 18(1): e13243, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38204584

ABSTRACT

Background: Influenza A(H3N2) viruses dominated early in the 2022-2023 influenza season in Europe, followed by higher circulation of influenza A(H1N1)pdm09 and B viruses. The VEBIS primary care network estimated the influenza vaccine effectiveness (VE) using a multicentre test-negative study. Materials and Methods: Primary care practitioners collected information and specimens from patients consulting with acute respiratory infection. We measured VE against any influenza, influenza (sub)type and clade, by age group, by influenza vaccine target group and by time since vaccination, using logistic regression. Results: We included 38 058 patients, of which 3786 were influenza A(H3N2), 1548 influenza A(H1N1)pdm09 and 3275 influenza B cases. Against influenza A(H3N2), VE was 36% (95% CI: 25-45) among all ages and ranged between 30% and 52% by age group and target group. VE against influenza A(H3N2) clade 2b was 38% (95% CI: 25-49). Overall, VE against influenza A(H1N1)pdm09 was 46% (95% CI: 35-56) and ranged between 29% and 59% by age group and target group. VE against influenza A(H1N1)pdm09 clade 5a.2a was 56% (95% CI: 46-65) and 79% (95% CI: 64-88) against clade 5a.2a.1. VE against influenza B was 76% (95% CI: 70-81); overall, 84%, 72% and 71% were among 0-14-year-olds, 15-64-year-olds and those in the influenza vaccination target group, respectively. VE against influenza B with a position 197 mutation of the hemagglutinin (HA) gene was 79% (95% CI: 73-85) and 90% (95% CI: 85-94) without this mutation. Conclusion: The 2022-2023 end-of-season results from the VEBIS network at primary care level showed high VE among children and against influenza B, with lower VE against influenza A(H1N1)pdm09 and A(H3N2).


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza Vaccines , Influenza, Human , Child , Humans , Europe/epidemiology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Primary Health Care , Vaccine Efficacy , Infant, Newborn , Infant , Child, Preschool , Adolescent , Young Adult , Adult , Middle Aged
17.
Int J Med Microbiol ; 314: 151598, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237287

ABSTRACT

Respiratory viral infections may have different impacts ranging from infection without symptoms to severe disease or even death though the reasons are not well characterized. A patient (age group 5-15 years) displaying symptoms of hemolytic uremic syndrome died one day after hospitalization. qPCR, next generation sequencing, virus isolation, antigenic characterization, resistance analysis was performed and virus replication kinetics in well-differentiated airway cells were determined. Autopsy revealed hemorrhagic pneumonia as major pathological manifestation. Lung samples harbored a large population of A(H1N1)pdm09 viruses with the polymorphism H456H/Y in PB1 polymerase. The H456H/Y viruses replicated much faster to high viral titers than upper respiratory tract viruses in vitro. H456H/Y-infected air-liquid interface cultures of differentiated airway epithelial cells did reflect a more pronounced loss of ciliated cells. A different pattern of virus quasispecies was found in the upper airway samples where substitution S263S/F (HA1) was observed. The data support the notion that viral quasispecies had evolved locally in the lung to support high replicative fitness. This change may have initiated further pathogenic processes leading to rapid dissemination of inflammatory mediators followed by development of hemorrhagic lung lesions and fatal outcome.


Subject(s)
Hemolytic-Uremic Syndrome , Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , Child, Preschool , Child , Adolescent , Epithelial Cells , Lung , Influenza, Human/epidemiology
18.
Int J Med Microbiol ; 314: 151609, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286065

ABSTRACT

Interspecies transmission of influenza A viruses (IAV) from pigs to humans is a concerning event as porcine IAV represent a reservoir of potentially pandemic IAV. We conducted a comprehensive analysis of two porcine A(H1N1)v viruses isolated from human cases by evaluating their genetic, antigenic and virological characteristics. The HA genes of those human isolates belonged to clades 1C.2.1 and 1C.2.2, respectively, of the A(H1N1) Eurasian avian-like swine influenza lineage. Antigenic profiling revealed substantial cross-reactivity between the two zoonotic H1N1 viruses and human A(H1N1)pdm09 virus and some swine viruses, but did not reveal cross-reactivity to H1N2 and earlier human seasonal A(H1N1) viruses. The solid-phase direct receptor binding assay analysis of both A(H1N1)v showed a predominant binding to α2-6-sialylated glycans similar to human-adapted IAV. Investigation of the replicative potential revealed that both A(H1N1)v viruses grow in human bronchial epithelial cells to similar high titers as the human A(H1N1)pdm09 virus. Cytokine induction was studied in human alveolar epithelial cells A549 and showed that both swine viruses isolated from human cases induced higher amounts of type I and type III IFN, as well as IL6 compared to a seasonal A(H1N1) or a A(H1N1)pdm09 virus. In summary, we demonstrate a remarkable adaptation of both zoonotic viruses to propagate in human cells. Our data emphasize the needs for continuous monitoring of people and regions at increased risk of such trans-species transmissions, as well as systematic studies to quantify the frequency of these events and to identify viral molecular determinants enhancing the zoonotic potential of porcine IAV.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Humans , Animals , Swine , Influenza A Virus, H1N1 Subtype/genetics , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , Influenza, Human/epidemiology , Germany/epidemiology , Swine Diseases/epidemiology , Phylogeny
19.
Euro Surveill ; 29(3)2024 Jan.
Article in English | MEDLINE | ID: mdl-38240061

ABSTRACT

We conducted a multicentre hospital-based test-negative case-control study to measure the effectiveness of adapted bivalent COVID-19 mRNA vaccines against PCR-confirmed SARS-CoV-2 infection during the Omicron XBB lineage-predominant period in patients aged ≥ 60 years with severe acute respiratory infection from five countries in Europe. Bivalent vaccines provided short-term additional protection compared with those vaccinated > 6 months before the campaign: from 80% (95% CI: 50 to 94) for 14-89 days post-vaccination, 15% (95% CI: -12 to 35) at 90-179 days, and lower to no effect thereafter.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Case-Control Studies , COVID-19/prevention & control , SARS-CoV-2/genetics , Hospitalization , Europe/epidemiology , RNA, Messenger
20.
Euro Surveill ; 28(47)2023 11.
Article in English | MEDLINE | ID: mdl-37997666

ABSTRACT

IntroductionTwo large multicentre European hospital networks have estimated vaccine effectiveness (VE) against COVID-19 since 2021.AimWe aimed to measure VE against PCR-confirmed SARS-CoV-2 in hospitalised severe acute respiratory illness (SARI) patients ≥ 20 years, combining data from these networks during Alpha (March-June)- and Delta (June-December)-dominant periods, 2021.MethodsForty-six participating hospitals across 14 countries follow a similar generic protocol using the test-negative case-control design. We defined complete primary series vaccination (PSV) as two doses of a two-dose or one of a single-dose vaccine ≥ 14 days before onset.ResultsWe included 1,087 cases (538 controls) and 1,669 cases (1,442 controls) in the Alpha- and Delta-dominant periods, respectively. During the Alpha period, VE against hospitalisation with SARS-CoV2 for complete Comirnaty PSV was 85% (95% CI: 69-92) overall and 75% (95% CI: 42-90) in those aged ≥ 80 years. During the Delta period, among SARI patients ≥ 20 years with symptom onset ≥ 150 days from last PSV dose, VE for complete Comirnaty PSV was 54% (95% CI: 18-74). Among those receiving Comirnaty PSV and mRNA booster (any product) ≥ 150 days after last PSV dose, VE was 91% (95% CI: 57-98). In time-since-vaccination analysis, complete all-product PSV VE was > 90% in those with their last dose < 90 days before onset; ≥ 70% in those 90-179 days before onset.ConclusionsOur results from this EU multi-country hospital setting showed that VE for complete PSV alone was higher in the Alpha- than the Delta-dominant period, and addition of a first booster dose during the latter period increased VE to over 90%.


Subject(s)
COVID-19 , Humans , Adult , COVID-19/epidemiology , COVID-19/prevention & control , BNT162 Vaccine , RNA, Viral , SARS-CoV-2 , Vaccine Efficacy , Hospitalization , Europe/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL