Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
Front Aging Neurosci ; 16: 1459796, 2024.
Article in English | MEDLINE | ID: mdl-39295643

ABSTRACT

Introduction: Hispanic/Latino populations are underrepresented in Alzheimer Disease (AD) genetic studies. Puerto Ricans (PR), a three-way admixed (European, African, and Amerindian) population is the second-largest Hispanic group in the continental US. We aimed to conduct a genome-wide association study (GWAS) and comprehensive analyses to identify novel AD susceptibility loci and characterize known AD genetic risk loci in the PR population. Materials and methods: Our study included Whole Genome Sequencing (WGS) and phenotype data from 648 PR individuals (345 AD, 303 cognitively unimpaired). We used a generalized linear-mixed model adjusting for sex, age, population substructure, and genetic relationship matrix. To infer local ancestry, we merged the dataset with the HGDP/1000G reference panel. Subsequently, we conducted univariate admixture mapping (AM) analysis. Results: We identified suggestive signals within the SLC38A1 and SCN8A genes on chromosome 12q13. This region overlaps with an area of linkage of AD in previous studies (12q13) in independent data sets further supporting. Univariate African AM analysis identified one suggestive ancestral block (p = 7.2×10-6) located in the same region. The ancestry-aware approach showed that this region has both European and African ancestral backgrounds and both contributing to the risk in this region. We also replicated 11 different known AD loci -including APOE- identified in mostly European studies, which is likely due to the high European background of the PR population. Conclusion: PR GWAS and AM analysis identified a suggestive AD risk locus on chromosome 12, which includes the SLC38A1 and SCN8A genes. Our findings demonstrate the importance of designing GWAS and ancestry-aware approaches and including underrepresented populations in genetic studies of AD.

3.
Alzheimers Dement ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39233587

ABSTRACT

BACKGROUND: Few rare variants have been identified in genetic loci from genome-wide association studies (GWAS) of Alzheimer's disease (AD), limiting understanding of mechanisms, risk assessment, and genetic counseling. METHODS: Using genome sequencing data from 197 families in the National Institute on Aging Alzheimer's Disease Family Based Study and 214 Caribbean Hispanic families, we searched for rare coding variants within known GWAS loci from the largest published study. RESULTS: Eighty-six rare missense or loss-of-function (LoF) variants completely segregated in 17.5% of families, but in 91 (22.1%) families Apolipoprotein E (APOE)-𝜀4 was the only variant segregating. However, in 60.3% of families, APOE 𝜀4, missense, and LoF variants were not found within the GWAS loci. DISCUSSION: Although APOE 𝜀4and several rare variants were found to segregate in both family datasets, many families had no variant accounting for their disease. This suggests that familial AD may be the result of unidentified rare variants. HIGHLIGHTS: Rare coding variants from GWAS loci segregate in familial Alzheimer's disease. Missense or loss of function variants were found segregating in nearly 7% of families. APOE-𝜀4 was the only segregating variant in 29.7% in familial Alzheimer's disease. In Hispanic and non-Hispanic families, different variants were found in segregating genes. No coding variants were found segregating in many Hispanic and non-Hispanic families.

4.
Mil Med ; 189(Supplement_3): 205-210, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160854

ABSTRACT

INTRODUCTION: Post-traumatic stress disorder (PTSD) is a primary military psychiatric condition with complex etiology including strong genetic and/or environmental influences. Environmental influences and demographics can play a role in supporting underlying genetic traits for clinical utility evaluation as risk modifying factors. We are undertaking an IRB approved study to evaluate polygenic scores of PTSD risk in the adverse childhood experience and serotonin (ACES) transporter cohort. MATERIALS AND METHODS: Baseline demographic characteristics and statistical modeling of 291 active duty service members from ACES cohort were used and excluded individuals with traumatic brain injury-induced loss of consciousness, pre-deployment PTSD or anxiety disorder, and pre-deployment prescription of antidepressants or psychoactive medications. Summary of categorical and numerical variables were evaluated using chi-square and t-test, respectively. We model PTSD risk and associated scores using linear and logistic regressions. RESULTS: The ACES subset was 79.1% males, multi-ancestry, and mean age of 38.3 years. Most PTSD individuals received behavioral therapy (89.6%) and/or prescribed antidepressants (67%) had higher scores in ACES, combat exposure scales, PTSD checklist military version, neurobehavioral symptom inventory, Pittsburg sleep quality index, insomnia severity index, and composite autonomic symptom score surveys and were less likely to expect future deployment. A positive correlation between age, total months deployed, ACES, CES, PCL-M, and positive-PTSD diagnosis were consistent but not in older individuals, who were more likely and frequently deployed although increasing risk for combat exposure. CONCLUSION: Demographic characteristics of the ACES cohort fit a coherent model of risk for PTSD to evaluate polygenic scores. Additional research is merited to understand PTSD effects on these confounding factors.


Subject(s)
Stress Disorders, Post-Traumatic , Humans , Stress Disorders, Post-Traumatic/epidemiology , Stress Disorders, Post-Traumatic/psychology , Male , Female , Adult , Cohort Studies , Adverse Childhood Experiences/statistics & numerical data , Adverse Childhood Experiences/psychology , Middle Aged , Risk Factors , Military Personnel/statistics & numerical data , Military Personnel/psychology , Logistic Models
5.
Am J Obstet Gynecol ; 231(3): 321.e1-321.e11, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38723985

ABSTRACT

BACKGROUND: Black women are at an increased risk of developing uterine leiomyomas and experiencing worse disease prognosis than White women. Epidemiologic and molecular factors have been identified as underlying these disparities, but there remains a paucity of deep, multiomic analysis investigating molecular differences in uterine leiomyomas from Black and White patients. OBJECTIVE: To identify molecular alterations within uterine leiomyoma tissues correlating with patient race by multiomic analyses of uterine leiomyomas collected from cohorts of Black and White women. STUDY DESIGN: We performed multiomic analysis of uterine leiomyomas from Black (42) and White (47) women undergoing hysterectomy for symptomatic uterine leiomyomata. In addition, our analysis included the application of orthogonal methods to evaluate fibroid biomechanical properties, such as second harmonic generation microscopy, uniaxial compression testing, and shear-wave ultrasonography analyses. RESULTS: We found a greater proportion of MED12 mutant uterine leiomyomas from Black women (>35% increase; Mann-Whitney U, P<.001). MED12 mutant tumors exhibited an elevated abundance of extracellular matrix proteins, including several collagen isoforms, involved in the regulation of the core matrisome. Histologic analysis of tissue fibrosis using trichrome staining and secondary harmonic generation microscopy confirmed that MED12 mutant tumors are more fibrotic than MED12 wild-type tumors. Using shear-wave ultrasonography in a prospectively collected cohort, Black patients had fibroids that were firmer than White patients, even when similar in size. In addition, these analyses uncovered ancestry-linked expression quantitative trait loci with altered allele frequencies in African and European populations correlating with differential abundance of several proteins in uterine leiomyomas independently of MED12 mutation status, including tetratricopeptide repeat protein 38. CONCLUSION: Our study shows that Black women have a higher prevalence of uterine leiomyomas harboring mutations in MED12 and that this mutational status correlates with increased tissue fibrosis compared with wild-type uterine leiomyomas. Our study provides insights into molecular alterations correlating with racial disparities in uterine leiomyomas and improves our understanding of the molecular etiology underlying uterine leiomyoma development within these populations.


Subject(s)
Black or African American , Leiomyoma , Mediator Complex , Uterine Neoplasms , White , Adult , Female , Humans , Middle Aged , Black or African American/genetics , Extracellular Matrix Proteins/genetics , Health Status Disparities , Leiomyoma/diagnostic imaging , Leiomyoma/ethnology , Leiomyoma/genetics , Mediator Complex/genetics , Mutation , Uterine Neoplasms/diagnostic imaging , Uterine Neoplasms/ethnology , Uterine Neoplasms/genetics , White/genetics
7.
HGG Adv ; 5(3): 100300, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38678364

ABSTRACT

Human genetic studies of critical COVID-19 pneumonia have revealed the essential role of type I interferon-dependent innate immunity to SARS-CoV-2 infection. Conversely, an association between the HLA-B∗15:01 allele and asymptomatic SARS-CoV-2 infection in unvaccinated individuals was recently reported, suggesting a contribution of pre-existing T cell-dependent adaptive immunity. We report a lack of association of classical HLA alleles, including HLA-B∗15:01, with pre-omicron asymptomatic SARS-CoV-2 infection in unvaccinated participants in a prospective population-based study in the United States (191 asymptomatic vs. 945 symptomatic COVID-19 cases). Moreover, we found no such association in the international COVID Human Genetic Effort cohort (206 asymptomatic vs. 574 mild or moderate COVID-19 cases and 1,625 severe or critical COVID-19 cases). Finally, in the Human Challenge Characterisation study, the three HLA-B∗15:01 individuals infected with SARS-CoV-2 developed symptoms. As with other acute primary infections studied, no classical HLA alleles favoring an asymptomatic course of SARS-CoV-2 infection were identified.


Subject(s)
Asymptomatic Infections , COVID-19 , SARS-CoV-2 , Humans , COVID-19/genetics , COVID-19/immunology , SARS-CoV-2/immunology , Male , Female , Alleles , HLA Antigens/genetics , Middle Aged , Adult , Prospective Studies , Aged , Genetic Predisposition to Disease
8.
Genes (Basel) ; 15(4)2024 03 26.
Article in English | MEDLINE | ID: mdl-38674343

ABSTRACT

Sickle cell trait (SCT), although generally a benign carrier state of hemoglobin S (HbAS), is a risk factor for exertional rhabdomyolysis (ERM), a rare but potentially fatal consequence of highly intense physical exercise, particularly among active-duty military personnel and high-performance athletes. The association between SCT and ERM is poorly understood. The objective of this study was to elucidate the genetic basis of ERM in an SCT-positive African American cohort. SCT-positive African Americans with a personal history of ERM (cases, n = 30) and without history of ERM (controls, n = 53) were enrolled in this study. Whole-genome sequencing was performed on DNA samples isolated from peripheral white blood cells. Participants' demographic, behavioral, and medical history information was obtained. An additional 131 controls were extracted from SCT-positive subjects of African descent from the 1000 Genomes Project. SCT carriers with ERM were characterized by myotoxicity features, significant muscle involvement dominated by muscle weakness, and severe pain and substantial increase in serum creatine kinase, with a mean value of 50,480 U/L. A distinctive feature of the SCT individuals with ERM was exertional collapse, which was reported in 53.3% of the cases in the study cohort. An important factor for the development of ERM was the duration and frequency of strenuous physical activity in the cases compared to the controls. Whole-genome sequencing identified 79,696 protein-coding variants. Genome-wide association analysis revealed that the p.C477R, rs115958260 variant in the SLC44A3 gene was significantly associated with ERM event in SCT-positive African Americans. The study results suggest that a combination of vigorous exercise and a genetic predisposing factor is involved in ERM.


Subject(s)
Black or African American , Genome-Wide Association Study , Rhabdomyolysis , Sickle Cell Trait , Adult , Female , Humans , Male , Middle Aged , Black or African American/genetics , Exercise , Military Personnel , Rhabdomyolysis/genetics , Sickle Cell Trait/genetics , Whole Genome Sequencing , Solute Carrier Proteins
9.
Acta Neuropathol ; 147(1): 70, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38598053

ABSTRACT

The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology. To test this, we leveraged whole-genome sequencing (WGS) data in the National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain (COL6A2) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. An independent analysis in a large cohort of 7185 APOEε4 homozygous carriers found that rs140926439 variant in FN1 was protective of AD (OR = 0.29; 95% CI [0.11, 0.78], P = 0.014) and delayed age at onset of disease by 3.37 years (95% CI [0.42, 6.32], P = 0.025). The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4-mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b-the ortholog for human FN1. We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling, and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests that vascular deposition of FN1 is related to the pathogenicity of APOEε4, and LOF variants in FN1 may reduce APOEε4-related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.


Subject(s)
Alzheimer Disease , Fibronectins , Aged , Animals , Humans , Alzheimer Disease/genetics , Fibronectins/genetics , Genetic Variation/genetics , Gliosis , Zebrafish
10.
Cell Genom ; 4(4): 100527, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38537634

ABSTRACT

The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ∼20.0 million sequence variations, of which 18,700 are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.


Subject(s)
Genome , Genomics , Rats , Animals , Genome/genetics , Molecular Sequence Annotation , Whole Genome Sequencing , Genetic Variation/genetics
11.
NPJ Precis Oncol ; 8(1): 68, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480868

ABSTRACT

We performed a deep proteogenomic analysis of bulk tumor and laser microdissection enriched tumor cell populations from high-grade serous ovarian cancer (HGSOC) tissue specimens spanning a broad spectrum of purity. We identified patients with longer progression-free survival had increased immune-related signatures and validated proteins correlating with tumor-infiltrating lymphocytes in 65 tumors from an independent cohort of HGSOC patients, as well as with overall survival in an additional 126 HGSOC patient cohort. We identified that homologous recombination deficient (HRD) tumors are enriched in pathways associated with metabolism and oxidative phosphorylation that we validated in independent patient cohorts. We further identified that polycomb complex protein BMI-1 is elevated in HR proficient (HRP) tumors, that elevated BMI-1 correlates with poor overall survival in HRP but not HRD HGSOC patients, and that HRP HGSOC cells are uniquely sensitive to BMI-1 inhibition.

12.
Sci Rep ; 14(1): 5006, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38438404

ABSTRACT

A combination of improved body armor, medical transportation, and treatment has led to the increased survival of warfighters from combat extremity injuries predominantly caused by blasts in modern conflicts. Despite advances, a high rate of complications such as wound infections, wound failure, amputations, and a decreased quality of life exist. To study the molecular underpinnings of wound failure, wound tissue biopsies from combat extremity injuries had RNA extracted and sequenced. Wounds were classified by colonization (colonized vs. non-colonized) and outcome (healed vs. failed) status. Differences in gene expression were investigated between timepoints at a gene level, and longitudinally by multi-gene networks, inferred proportions of immune cells, and expression of healing-related functions. Differences between wound outcomes in colonized wounds were more apparent than in non-colonized wounds. Colonized/healed wounds appeared able to mount an adaptive immune response to infection and progress beyond the inflammatory stage of healing, while colonized/failed wounds did not. Although, both colonized and non-colonized failed wounds showed increasing inferred immune and inflammatory programs, non-colonized/failed wounds progressed beyond the inflammatory stage, suggesting different mechanisms of failure dependent on colonization status. Overall, these data reveal gene expression profile differences in healing wounds that may be utilized to improve clinical treatment paradigms.


Subject(s)
Quality of Life , Surgical Wound , Humans , Amputation, Surgical , Gene Regulatory Networks , Extremities
13.
NPJ Parkinsons Dis ; 10(1): 39, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378815

ABSTRACT

Sex influences the prevalence and symptoms of Lewy body dementia (LBD). However, genome-wide association studies typically focus on autosomal variants and exclude sex-specific risk factors. We addressed this gap by performing an X chromosome-wide association study using whole-genome sequence data from 2591 LBD cases and 4391 controls. We identified a significant risk locus within intron 1 of MAP3K15 (rs141773145, odds ratio = 2.42, 95% confidence interval = 1.65-3.56, p-value = 7.0 × 10-6) in female LBD cases conditioned for APOE ε4 dosage. The locus includes an enhancer region that regulates MAP3K15 expression in ganglionic eminence cells derived from primary cultured neurospheres. Rare variant burden testing showed differential enrichment of missense mutations in TEX13A in female LBD cases, that did not reach significance (p-value = 1.34 × 10-4). These findings support the sex-specific effects of genetic factors and a potential role of Alzheimer's-related risk for females with LBD.

14.
medRxiv ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38196599

ABSTRACT

BACKGROUND: Few rare variants have been identified in genetic loci from genome wide association studies of Alzheimer's disease (AD), limiting understanding of mechanisms and risk assessment, and genetic counseling. METHODS: Using genome sequencing data from 197 families in The NIA Alzheimer's Disease Family Based Study, and 214 Caribbean Hispanic families, we searched for rare coding variants within known GWAS loci from the largest published study. RESULTS: Eighty-six rare missense or loss of function (LoF) variants completely segregated in 17.5% of families, but in 91 (22.1%) of families APOE-e4 was the only variant segregating. However, in 60.3% of families neither APOE-e4 nor missense or LoF variants were found within the GWAS loci. DISCUSSION: Although APOE-ε4 and several rare variants were found to segregate in both family datasets, many families had no variant accounting for their disease. This suggests that familial AD may be the result of unidentified rare variants.

15.
J Invest Dermatol ; 144(7): 1633-1648.e14, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38237729

ABSTRACT

Wound research has typically been performed without regard for where the wounds are located on the body, despite well-known heterogeneities in physical and biological properties between different skin areas. The skin covering the palms and soles is highly specialized, and plantar ulcers are one of the most challenging and costly wound types to manage. Using primarily the porcine model, we show that plantar skin is molecularly and functionally more distinct from nonplantar skin than previously recognized, with unique gene and protein expression profiles, broad alterations in cellular functions, constitutive activation of many wound-associated phenotypes, and inherently delayed healing. This unusual physiology is likely to play a significant but underappreciated role in the pathogenesis of plantar ulcers as well as the last 25+ years of futility in therapy development efforts. By revealing this critical yet unrecognized pitfall, we hope to contribute to the development of more effective therapies for these devastating nonhealing wounds.


Subject(s)
Phenotype , Skin , Wound Healing , Animals , Wound Healing/physiology , Swine , Skin/pathology , Skin/injuries , Skin/metabolism , Disease Models, Animal , Foot Ulcer/physiopathology , Foot Ulcer/pathology , Humans , Female , Skin Physiological Phenomena , Foot
16.
Brain Commun ; 6(1): fcad346, 2024.
Article in English | MEDLINE | ID: mdl-38162907

ABSTRACT

Lewy body dementia is the second most common neurodegenerative dementia after Alzheimer's disease. Disease-modifying therapies for this disabling neuropsychiatric condition are critically needed. To identify drugs associated with the risk of developing Lewy body dementia, we performed a population-based case-control study of 148 170 US Medicare participants diagnosed with Lewy body dementia between 1 January 2008 and 31 December 2014 and of 1 253 043 frequency-matched controls. We estimated odds ratios and 95% confidence intervals for the association of Lewy body dementia risk with 1017 prescription drugs overall and separately for the three major racial groups (Black, Hispanic and White Americans). We identified significantly reduced Lewy body dementia risk associated with drugs used to treat cardiovascular diseases (anti-hypertensives: odds ratio = 0.72, 95% confidence interval = 0.70-0.74, P-value = 0; cholesterol-lowering agents: odds ratio = 0.85, 95% confidence interval = 0.83-0.87, P-value = 0; anti-diabetics: odds ratio = 0.83, 95% confidence interval = 0.62-0.72, P-value = 0). Notably, anti-diabetic medications were associated with a larger risk reduction among Black Lewy body dementia patients compared with other racial groups (Black: odds ratio = 0.67, 95% confidence interval = 0.62-0.72, P-value = 0; Hispanic: odds ratio = 0.86, 95% = 0.80-0.92, P-value = 5.16 × 10-5; White: odds ratio = 0.85, 95% confidence interval = 0.82-0.88, P-value = 0). To independently confirm the epidemiological findings, we looked for evidence of genetic overlap between Lewy body dementia and cardiovascular traits using whole-genome sequence data generated for 2591 Lewy body dementia patients and 4027 controls. Bivariate mixed modelling identified shared genetic risk between Lewy body dementia and low-density lipoprotein cholesterol levels, Type 2 diabetes and hypertension. By combining epidemiological and genomic data, we demonstrated that drugs treating cardiovascular diseases are associated with reduced Lewy body dementia risk, and these associations varied across racial groups. Future randomized clinical trials need to confirm our findings, but our data suggest that assiduous management of cardiovascular diseases may be beneficial in this understudied form of dementia.

17.
J Am Heart Assoc ; 13(3): e031377, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38293922

ABSTRACT

BACKGROUND: Supravalvar aortic stenosis (SVAS) is a characteristic feature of Williams-Beuren syndrome (WBS). Its severity varies: ~20% of people with Williams-Beuren syndrome have SVAS requiring surgical intervention, whereas ~35% have no appreciable SVAS. The remaining individuals have SVAS of intermediate severity. Little is known about genetic modifiers that contribute to this variability. METHODS AND RESULTS: We performed genome sequencing on 473 individuals with Williams-Beuren syndrome and developed strategies for modifier discovery in this rare disease population. Approaches include extreme phenotyping and nonsynonymous variant prioritization, followed by gene set enrichment and pathway-level association tests. We next used GTEx v8 and proteomic data sets to verify expression of candidate modifiers in relevant tissues. Finally, we evaluated overlap between the genes/pathways identified here and those ascertained through larger aortic disease/trait genome-wide association studies. We show that SVAS severity in Williams-Beuren syndrome is associated with increased frequency of common and rarer variants in matrisome and immune pathways. Two implicated matrisome genes (ACAN and LTBP4) were uniquely expressed in the aorta. Many genes in the identified pathways were previously reported in genome-wide association studies for aneurysm, bicuspid aortic valve, or aortic size. CONCLUSIONS: Smaller sample sizes in rare disease studies necessitate new approaches to detect modifiers. Our strategies identified variation in matrisome and immune pathways that are associated with SVAS severity. These findings suggest that, like other aortopathies, SVAS may be influenced by the balance of synthesis and degradation of matrisome proteins. Leveraging multiomic data and results from larger aorta-focused genome-wide association studies may accelerate modifier discovery for rare aortopathies like SVAS.


Subject(s)
Aortic Stenosis, Supravalvular , Williams Syndrome , Humans , Williams Syndrome/genetics , Genome-Wide Association Study , Proteomics , Rare Diseases , Aortic Stenosis, Supravalvular/genetics , Aortic Stenosis, Supravalvular/metabolism , Aortic Stenosis, Supravalvular/surgery
18.
Biol Psychiatry ; 96(1): 15-25, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38141912

ABSTRACT

BACKGROUND: Suicide is a societal and public health concern of global scale. Identifying genetic risk factors for suicide attempt can characterize underlying biology and enable early interventions to prevent deaths. Recent studies have described common genetic variants for suicide-related behaviors. Here, we advance this search for genetic risk by analyzing the association between suicide attempt and uncommon variation exome-wide in a large, ancestrally diverse sample. METHODS: We sequenced whole genomes of 13,584 soldiers from the Army STARRS (Army Study to Assess Risk and Resilience in Servicemembers), including 979 individuals with a history of suicide attempt. Uncommon, nonsilent protein-coding variants were analyzed exome-wide for association with suicide attempt using gene-collapsed and single-variant analyses. RESULTS: We identified 19 genes with variants enriched in individuals with history of suicide attempt, either through gene-collapsed or single-variant analysis (Bonferroni padjusted < .05). These genes were CIB2, MLF1, HERC1, YWHAE, RCN2, VWA5B1, ATAD3A, NACA, EP400, ZNF585A, LYST, RC3H2, PSD3, STARD9, SGMS1, ACTR6, RGS7BP, DIRAS2, and KRTAP10-1. Most genes had variants across multiple genomic ancestry groups. Seventeen of these genes were expressed in healthy brain tissue, with 9 genes expressed at the highest levels in the brain versus other tissues. Brains from individuals deceased from suicide aberrantly expressed RGS7BP (padjusted = .035) in addition to nominally significant genes including YWHAE and ACTR6, all of which have reported associations with other mental disorders. CONCLUSIONS: These results advance the molecular characterization of suicide attempt behavior and support the utility of whole-genome sequencing for complementing the findings of genome-wide association studies in suicide research.


Subject(s)
Military Personnel , Suicide, Attempted , Humans , Military Personnel/psychology , Male , United States/epidemiology , Female , Adult , Young Adult , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide
19.
J Allergy Clin Immunol ; 153(6): 1655-1667, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38154666

ABSTRACT

BACKGROUND: Functional T-cell responses are essential for virus clearance and long-term protection after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, whereas certain clinical factors, such as older age and immunocompromise, are associated with worse outcome. OBJECTIVE: We sought to study the breadth and magnitude of T-cell responses in patients with coronavirus disease 2019 (COVID-19) and in individuals with inborn errors of immunity (IEIs) who had received COVID-19 mRNA vaccine. METHODS: Using high-throughput sequencing and bioinformatics tools to characterize the T-cell receptor ß repertoire signatures in 540 individuals after SARS-CoV-2 infection, 31 IEI recipients of COVID-19 mRNA vaccine, and healthy controls, we quantified HLA class I- and class II-restricted SARS-CoV-2-specific responses and also identified several HLA allele-clonotype motif associations in patients with COVID-19, including a subcohort of anti-type 1 interferon (IFN-1)-positive patients. RESULTS: Our analysis revealed that elderly patients with COVID-19 with critical disease manifested lower SARS-CoV-2 T-cell clonotype diversity as well as T-cell responses with reduced magnitude, whereas the SARS-CoV-2-specific clonotypes targeted a broad range of HLA class I- and class II-restricted epitopes across the viral proteome. The presence of anti-IFN-I antibodies was associated with certain HLA alleles. Finally, COVID-19 mRNA immunization induced an increase in the breadth of SARS-CoV-2-specific clonotypes in patients with IEIs, including those who had failed to seroconvert. CONCLUSIONS: Elderly individuals have impaired capacity to develop broad and sustained T-cell responses after SARS-CoV-2 infection. Genetic factors may play a role in the production of anti-IFN-1 antibodies. COVID-19 mRNA vaccines are effective in inducing T-cell responses in patients with IEIs.


Subject(s)
COVID-19 , Immunocompromised Host , SARS-CoV-2 , Humans , COVID-19/immunology , SARS-CoV-2/immunology , Male , Middle Aged , Female , Immunocompromised Host/immunology , Adult , Aged , T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , Immunocompetence/immunology
20.
bioRxiv ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38106234

ABSTRACT

Clinical effectiveness of KRAS G12C inhibitors (G12Cis) is limited both by intrinsic and acquired resistance, necessitating the development of combination approaches. We found that targeting proximal receptor tyrosine kinase (RTK) signaling using the SOS1 inhibitor (SOS1i) BI-3406 both enhanced the potency of and delayed resistance to G12Ci treatment, but the extent of SOS1i effectiveness was modulated by both SOS2 expression and the specific mutational landscape. SOS1i enhanced the efficacy of G12Ci and limited rebound RTK/ERK signaling to overcome intrinsic/adaptive resistance, but this effect was modulated by SOS2 protein levels. Survival of drug-tolerant persister (DTP) cells within the heterogeneous tumor population and/or acquired mutations that reactivate RTK/RAS signaling can lead to outgrowth of tumor initiating cells (TICs) that drive therapeutic resistance. G12Ci drug tolerant persister cells showed a 2-3-fold enrichment of TICs, suggesting that these could be a sanctuary population of G12Ci resistant cells. SOS1i re-sensitized DTPs to G12Ci and inhibited G12C-induced TIC enrichment. Co-mutation of the tumor suppressor KEAP1 limits the clinical effectiveness of G12Cis, and KEAP1 and STK11 deletion increased TIC frequency and accelerated the development of acquired resistance to G12Ci in situ. SOS1i both delayed acquired G12Ci resistance and limited the total number of resistant colonies regardless of KEAP1 and STK11 mutational status. These data suggest that SOS1i could be an effective strategy to both enhance G12Ci efficacy and prevent G12Ci resistance regardless of co-mutations.

SELECTION OF CITATIONS
SEARCH DETAIL