Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 18837, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914790

ABSTRACT

Prostate-specific membrane antigen (PSMA), highly expressed in prostate cancer, is a promising target for radionuclide therapy. Auger electron-emitting radionuclides are well suited for targeted radionuclide therapy if they can be delivered close to the DNA of the targeted cells. This preclinical study evaluated the theranostic pair [55/58mCo]Co-DOTA-PSMA-617 for PET imaging and Auger electron therapy of prostate cancer. [58mCo]Co-DOTA-PSMA-617 was successfully prepared with > 99% radiochemical yield and purity. In vitro, uptake and subcellular distribution assays in PSMA-positive prostate cancer cells showed PSMA-specific uptake with high cell-associated activity in the nucleus. Incubation with [58mCo]Co-DOTA-PSMA-617 reduced cell viability and clonogenic survival in a significant dose-dependent manner (p < 0.05). Biodistribution of xenografted mice showed high specific tumor uptake of the cobalt-labeled PSMA ligand for all time points with rapid clearance from normal tissues, which PET imaging confirmed. In vivo, therapy with [58mCo]Co-DOTA-PSMA-617 in tumor-bearing mice demonstrated significantly increased median survival for treated mice compared to control animals (p = 0.0014). In conclusion, [55/58mCo]Co-DOTA-PSMA-617 displayed excellent in vitro and in vivo properties, offering significant survival benefits in mice with no observed toxicities.


Subject(s)
Electrons , Prostatic Neoplasms , Male , Humans , Mice , Animals , Tissue Distribution , Cell Line, Tumor , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Radioisotopes , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/chemistry
2.
BJUI Compass ; 4(5): 513-522, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37636207

ABSTRACT

Background: Prostate-specific membrane antigen (PSMA)-positron emission tomography/contrast-enhanced computed tomography (PET/CT) is a sensitive imaging modality for prostate cancer (PCa). Due to lack of knowledge of the patient benefit, PSMA-PET/CT is not yet recommended in the European guidelines for staging and treatment planning of patients with newly diagnosed PCa. We will investigate the potential difference in progression-free survival (PFS) and quality of life (QoL) of using PSMA-PET/CT versus sodium fluoride (NaF)-PET/CT for staging and treatment planning in patients with newly diagnosed PCa. Study Design: This is a prospective randomised controlled multicentre trial carried out at three centres in the Region of Southern Denmark. Endpoints: The primary endpoint is PFS. Secondary endpoints are residual disease, stage migration, impact on treatment strategies, stage distribution, QoL and diagnostic accuracy measures. Patients and Methods: Patients eligible for the study have newly diagnosed unfavourable intermediate- or high-risk PCa. A total of 448 patients will be randomised 1:1 into two groups: (A) a control group staged with Na[18F]F-PET/CT and (B) an intervention group staged with [18F]PSMA-1007-PET/CT. A subgroup in the intervention group will have a supplementary blinded Na[18F]F-PET/CT performed for the purpose of performing accuracy analyses. QoL will be assessed at baseline and with regular intervals (3-12 months) during the study period. Treatment decisions are achieved at multidisciplinary team conferences based on the results of the respective scans and according to current Danish guidelines. Trial Registration: The Regional Committees on Health Research Ethics for Southern Denmark (S-20190161) and the Danish Medicines Agency (EudraCT Number 2021-000123-12) approved the study, and it has been registered on clinicaltrials.gov (Record 2020110469).

3.
Molecules ; 27(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36296411

ABSTRACT

BACKGROUND: The somatostatin receptors 1-5 are overexpressed on neuroendocrine neoplasms and, as such, represent a favorable target for molecular imaging. This study investigates the potential of [18F]AlF-NOTA-[1-Nal3]-Octreotide and compares it in vivo to DOTA- and NOTA-[1-Nal3]-Octreotide radiolabeled with gallium-68. METHODS: DOTA- and NOTA-NOC were radiolabeled with gallium-68 and NOTA-NOC with [18F]AlF. Biodistributions of the three radioligands were evaluated in AR42J xenografted mice at 1 h p.i and for [18F]AlF at 3 h p.i. Preclinical PET/CT was applied to confirm the general uptake pattern. RESULTS: Gallium-68 was incorporated into DOTA- and NOTA-NOC in yields and radiochemical purities greater than 96.5%. NOTA-NOC was radiolabeled with [18F]AlF in yields of 38 ± 8% and radiochemical purity above 99% after purification. The biodistribution in tumor-bearing mice showed a high uptake in tumors of 26.4 ± 10.8 %ID/g for [68Ga]Ga-DOTA-NOC and 25.7 ± 5.8 %ID/g for [68Ga]Ga-NOTA-NOC. Additionally, [18F]AlF-NOTA-NOC exhibited a tumor uptake of 37.3 ± 10.5 %ID/g for [18F]AlF-NOTA-NOC, which further increased to 42.1 ± 5.3 %ID/g at 3 h p.i. CONCLUSIONS: The high tumor uptake of all radioligands was observed. However, [18F]AlF-NOTA-NOC surpassed the other clinically well-established radiotracers in vivo, especially at 3 h p.i. The tumor-to-blood and -liver ratios increased significantly over three hours for [18F]AlF-NOTA-NOC, making it possible to detect liver metastases. Therefore, [18F]AlF demonstrates promise as a surrogate pseudo-radiometal to gallium-68.


Subject(s)
Gallium Radioisotopes , Neuroendocrine Tumors , Animals , Mice , Neuroendocrine Tumors/diagnostic imaging , Receptors, Somatostatin/metabolism , Positron Emission Tomography Computed Tomography/methods , Octreotide , Tissue Distribution , Positron-Emission Tomography/methods , Radiopharmaceuticals
4.
EJNMMI Radiopharm Chem ; 6(1): 21, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34117961

ABSTRACT

BACKGROUND: The radiofluorinated levodopa analogue 6-[18F]F-L-DOPA (3,4-dihydroxy-6-18F-L-phenylalanine) is a commonly employed radiotracer for PET/CT imaging of multiple oncological and neurological indications. An unusually large number of different radiosyntheses have been published to the point where two different Ph. Eur. monographs exist depending on whether the chemistry relies on electrophilic or nucleophilic radiosubstitution of appropriate chemical precursors. For new PET imaging sites wishing to adopt [18F]FDOPA into clinical practice, selecting the appropriate production process may be difficult and dependent on the clinical needs of the site. METHODS: Data from four years of [18F]FDOPA production at three different clinical sites are collected and compared. These three sites, Aarhus University Hospital (AUH), Odense University Hospital (OUH), and Herlev University Hospital (HUH), produce the radiotracer by different radiosynthetic routes with AUH adopting an electrophilic strategy, while OUH and HUH employ two different nucleophilic approaches. Production failure rates, radiochemical yields, and molar activities are compared across sites and time. Additionally, the clinical use of the radiotracer over the time period considered at the different sites are presented and discussed. RESULTS: The electrophilic substitution route suffers from being demanding in terms of cyclotron operation and maintenance. This challenge, however, was found to be compensated by a production failure rate significantly below that of both nucleophilic approaches; a result of simpler chemistry. The five-step nucleophilic approach employed at HUH produces superior radiochemical yields compared to the three-step approach adopted at OUH but suffers from the need for more comprehensive synthesis equipment given the multi-step nature of the procedure, including HPLC purification. While the procedure at OUH furnishes the lowest radiochemical yield of the synthetic routes considered, it produces the highest molar activity. This is of importance across the clinical applications of the tracer discussed here, including dopamine synthesis in striatum of subjects with schizophrenia and congenital hyperinsulinism in infants. CONCLUSION: For most sites either of the two nucleophilic substitution strategies should be favored. However, which of the two will depend on whether a given site wishes to optimize the radiochemical yield or the ease of the use.

5.
EJNMMI Radiopharm Chem ; 6(1): 1, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33411034

ABSTRACT

BACKGROUND: With increasing clinical demand for gallium-68, commercial germanium-68/gallium-68 ([68Ge]Ge/[68Ga]Ga) generators are incapable of supplying sufficient amounts of the short-lived daughter isotope. In this study, we demonstrate a high-yield, automated method for producing multi-Curie levels of [68Ga]GaCl3 from solid zinc-68 targets and subsequent labelling to produce clinical-grade [68Ga]Ga-PSMA-11 and [68Ga]Ga-DOTATATE. RESULTS: Enriched zinc-68 targets were irradiated at up to 80 µA with 13 MeV protons for 120 min; repeatedly producing up to 194 GBq (5.24 Ci) of purified gallium-68 in the form of [68Ga]GaCl3 at the end of purification (EOP) from an expected > 370 GBq (> 10 Ci) at end of bombardment. A fully automated dissolution/separation process was completed in 35 min. Isolated product was analysed according to the Ph. Eur. monograph for accelerator produced [68Ga]GaCl3 and found to comply with all specifications. In every instance, the radiochemical purity exceeded 99.9% and importantly, the radionuclidic purity was sufficient to allow for a shelf-life of up to 7 h based on this metric alone. Fully automated production of up to 72.2 GBq [68Ga]Ga-PSMA-11 was performed, providing a product with high radiochemical purity (> 98.2%) and very high apparent molar activities of up to 722 MBq/nmol. Further, manual radiolabelling of up to 3.2 GBq DOTATATE was performed in high yields (> 95%) and with apparent molar activities (9-25 MBq/nmol) sufficient for clinical use. CONCLUSIONS: We have developed a high-yielding, automated method for the production of very high amounts of [68Ga]GaCl3, sufficient to supply proximal radiopharmacies. The reported method led to record-high purified gallium-68 activities (194 GBq at end of purification) and subsequent labelling of PSMA-11 and DOTATATE. The process was highly automated from irradiation through to formulation of the product, and as such comprised a high level of radiation protection. The quality control results obtained for both [68Ga]GaCl3 for radiolabelling and [68Ga]Ga-PSMA-11 are promising for clinical use.

6.
Sci Rep ; 9(1): 17086, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31745219

ABSTRACT

Gastrin-releasing peptide receptors (GRPRs) are promising targets in oligometastatic prostate cancer. We have recently used 55Co (T1/2 = 17.5 h) as a label for next day PET imaging of GRPR expression obtaining high imaging contrast. The radionuclide-chelator combination can significantly influence the biodistribution of radiopeptides. Therefore, in this study, we hypothesized that the properties of 55Co-labeled PEG2-RM26 can be improved by identifying the optimal macrocyclic chelator. All analogues (X-PEG2-RM26, X = NOTA,NODAGA,DOTA,DOTAGA) were successfully labeled with radiocobalt with high yields and demonstrated high stability. The radiopeptides bound specifically and with picomolar affinity to GRPR and their cellular processing was characterized by low internalization. The best binding capacity was found for DOTA-PEG2-RM26. Ex vivo biodistribution in PC-3 xenografted mice was characterized by rapid blood clearance via renal excretion. Tumor uptake was similar for all conjugates at 3 h pi, exceeding the uptake in all other organs. Higher kidney uptake and longer retention were associated with N-terminal negative charge (DOTAGA-containing conjugate). Tumor-to-organ ratios increased over time for all constructs, although significant chelator-dependent differences were observed. Concordant with affinity measurements, DOTA-analog had the best retention of activity in tumors, resulting in the highest tumor-to-blood ratio 24 h pi, which translated into high contrast PET/CT imaging (using 55Co).


Subject(s)
Bombesin/pharmacokinetics , Cobalt Radioisotopes/pharmacokinetics , Macrocyclic Compounds/chemistry , Organometallic Compounds/chemistry , Positron-Emission Tomography/methods , Prostatic Neoplasms/pathology , Receptors, Bombesin/antagonists & inhibitors , Animals , Apoptosis , Bombesin/analogs & derivatives , Bombesin/pharmacology , Cell Proliferation , Chelating Agents/chemistry , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Neurotransmitter Agents/chemistry , Neurotransmitter Agents/pharmacokinetics , Neurotransmitter Agents/pharmacology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
J Control Release ; 291: 11-25, 2018 12 10.
Article in English | MEDLINE | ID: mdl-30291986

ABSTRACT

BACKGROUND AND MOTIVATION: While small molecules can be used in cancer diagnosis there is a need for imageable diagnostic NanoParticles (NPs) that act as surrogates for the therapeutic NPs. Many NPs are composed of hydrophobic materials so the challenge is to formulate hydrophobic imaging agents. To develop individualized medical treatments based on NP, a first step should be the selection of patients who are likely responders to the treatment as judged by imaging tumor accumulation of NPs. This requires NPs with the same size and structure as the subsequent therapeutic NPs but labelled with a long-lived radionuclide. Cobalt isotopes are good candidates for NP labelling since 55Co has half-life of 17.5 h and positron energy of 570 keV while 57Co (t1/2 271.6 d) is an isotope suited for preclinical single photon emission tomography (SPECT) to visualize biodistribution and pharmacokinetics of NPs. We used the hydrophobic octaethyl porphyrin (OEP) to chelate cobalt and to encapsulate it inside hydrophobic liquid NPs (LNPs). We hypothesized that at least two additional hydrophobic axial ligands (oleylamine, OA) must be provided to the OEP-Co complex in order to encapsulate and retain Co inside LNP. RESULTS: 1. Cobalt chelation by OEP and OA. The association constant of cobalt to OEP was 2.49 × 105 M-1 and the formation of the hexacoordinate complex OEP-Co-4OA was measured by spectroscopy. 2. NP formulation and characterization: LNPs were prepared by the fast ethanol injection method and were composed of a liquid core (triolein) surrounded by a lipid monolayer (DSPC:Cholesterol:DSPE-PEG2000). The size of the LNPs loaded with the cobalt complex was 40 ±â€¯5 nm, 3. Encapsulation of OEP-Co-OA: The loading capacity of OEP-Co-OA in LNP was 5 mol%. 4. Retention of OEP-57Co-4OA complex in the LNPs: the positive effect of the OA ligands was demonstrated on the stability of the OEP-57Co-4OA complex, providing a half-life for retention in PBS of 170 h (7 days) while in the absence of the axial OA ligands was only 22 h. 5 Biodistribution Study: the in vivo biodistribution of LNP was studied in AR42J pancreatic tumor-bearing mice. The estimated half-life of LNPs in blood was about 7.2 h. Remarkably, the accumulation of LNPs in the tumor was as high as 9.4% ID/g 24 h after injection with a doubling time for tumor accumulation of 3.22 h. The most important result was that the nanoparticles could indeed accumulate in the AR42J tumors up to levels greater than those of other NPs previously measured in the same tumor model, and at about half the values reported for the molecular agent 57Co-DOTATATE. CONCLUSIONS: The additional hydrophobic chelator OA was indeed needed to obtain a stable octahedral OEP-Co-4OA. Cobalt was actually well-retained inside LNP in the OEP-Co-4OA complex. The method described in the present work for the core-labelling of LNPs with cobalt is now ready for labeling of NPs with 55Co, or indeed other hexadentate radionuclides of interest for preclinical in vivo PET-imaging and radio-therapeutics.


Subject(s)
Amines/analysis , Chelating Agents/analysis , Cobalt Radioisotopes/analysis , Nanoparticles/analysis , Neoplasms/diagnostic imaging , Porphyrins/analysis , Tomography, Emission-Computed, Single-Photon/methods , Amines/pharmacokinetics , Animals , Chelating Agents/pharmacokinetics , Cobalt Radioisotopes/pharmacokinetics , Hydrophobic and Hydrophilic Interactions , Male , Mice , Mice, Inbred NOD , Mice, SCID , Porphyrins/pharmacokinetics , Tissue Distribution
8.
Contrast Media Mol Imaging ; 2017: 6873684, 2017.
Article in English | MEDLINE | ID: mdl-29097932

ABSTRACT

High gastrin releasing peptide receptor (GRPR) expression is associated with numerous cancers including prostate and breast cancer. The aim of the current study was to develop a 55Co-labeled PET agent based on GRPR antagonist RM26 for visualization of GRPR-expressing tumors. Labeling with 57Co and 55Co, stability, binding specificity, and in vitro and in vivo characteristics of 57Co-NOTA-PEG2-RM26 were studied. NOTA-PEG2-RM26 was successfully radiolabeled with 57Co and 55Co with high yields and demonstrated high stability. The radiopeptide showed retained binding specificity to GRPR in vitro and in vivo. 57Co-NOTA-PEG2-RM26 biodistribution in mice was characterized by rapid clearance of radioactivity from blood and normal non-GRPR-expressing organs and low hepatic uptake. The clearance was predominantly renal with a low degree of radioactivity reabsorption. Tumor-to-blood ratios were approximately 200 (3 h pi) and 1000 (24 h pi). The favorable biodistribution of cobalt-labeled NOTA-PEG2-RM26 translated into high contrast preclinical PET/CT (using 55Co) and SPECT/CT (using 57Co) images of PC-3 xenografts. The initial biological results suggest that 55Co-NOTA-PEG2-RM26 is a promising tracer for PET visualization of GRPR-expressing tumors.


Subject(s)
Bombesin/antagonists & inhibitors , Cobalt Radioisotopes/pharmacokinetics , Positron-Emission Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Receptors, Bombesin/antagonists & inhibitors , Receptors, Bombesin/analysis , Animals , Heterografts , Humans , Male , Mice , Receptors, Bombesin/metabolism , Tissue Distribution
9.
Mol Imaging Biol ; 19(6): 915-922, 2017 12.
Article in English | MEDLINE | ID: mdl-28924629

ABSTRACT

PURPOSE: Prostate-specific membrane antigen (PSMA) comprises a recognized target for molecular imaging of prostate cancer. As such, radiolabeled PSMA inhibitors are of great value for diagnosis and staging of this disease. Herein, we disclose the preclinical characterization of [55Co]PSMA-617 for positron emission tomography (PET)/x-ray computed tomography (CT) imaging of prostate cancer lesions. PROCEDURES: By the application of microwave heating, PSMA-617 in acetate buffer (0.4 M, pH 4.4) was labeled with the radioisotopes cobalt-55/57. The extents of internalization and dissociation constants (K D) were determined against 2-(phosphonomethyl)-pentanedioic acid in two PSMA-positive cell lines, LNCaP, and PC3-PIP, with [57Co]PSMA-617 as a surrogate for [55Co]PSMA-617 (T½ 17.5 h, ß max 1.5 MeV, Iß 76 %). The biodistribution in LNCaP xenograft mice was investigated using [57Co]PSMA-617 and [55Co]PSMA-617 was employed for PET/CT imaging at 1, 4, and 24 h and compared to PET/CT scans using [68Ga]PSMA-617. RESULTS: The radiolabeling with cobalt-55/57 was performed in yields greater than 99.5 and 99.8 % and radiochemical purities of 99.7 and 98.9 %, respectively. The molar-specific activities were 18.2 MBq/nmol and 3.3 MBq/nmol. The cellular K D were determined to be 4.7 nM for LNCaP and 9.8 nM for PC3-PIP, correspondingly. Internalization of 76 and 71 % of the cell-associated radioactivity was found for LNCaP and PC3-PIP cells after incubation up to 240 min, respectively. In regard to the biodistribution in LNCaP xenograft mice, [57Co]PSMA-617 displayed a high and relatively constant uptake in the tumor (12.9 %IA/g at 1 h to 10.5 %IA/g at 24 h) with an initial but transient high uptake in the kidneys, adrenals, and spleen. Tumor-to-background ratios improved over time as normal tissue cleared of the radioligand (tumor-to-blood: 26, 258, and 3013; tumor-to-kidney: 0.11, 0.28, and 4.3 at 1, 4, and 24 h). PET/CT imaging with [55Co]PSMA-617 in xenograft mice confirmed the high tumor uptake and fast clearance of normal tissues over time and was found superior to imaging with [68Ga]PSMA-617. CONCLUSION: Radiolabeling of PSMA-617 was achieved in excellent yields and radiochemical purities. Favorable in vitro data comprising low K D values and high extent of internalization was determined for two PSMA-positive cell lines. In xenograft mice, high tumor accumulation and excellent tumor-to-normal tissues ratios were established by biodistribution experiments and PET/CT imaging and, hence, confirm the potential of [55Co]PSMA-617 for delayed clinical imaging of prostate cancer.


Subject(s)
Cobalt Radioisotopes/chemistry , Positron-Emission Tomography , Prostate-Specific Antigen/metabolism , Prostatic Neoplasms/diagnostic imaging , Animals , Cell Line, Tumor , Humans , Ligands , Male , Mice, SCID , Positron Emission Tomography Computed Tomography , Prostate-Specific Antigen/chemistry , Prostatic Neoplasms/pathology , Tissue Distribution , Xenograft Model Antitumor Assays
10.
Theranostics ; 6(12): 2278-2291, 2016.
Article in English | MEDLINE | ID: mdl-27924163

ABSTRACT

Glioblastoma, the most common and malignant primary brain tumor, always recurs after standard treatment. Therefore, promising new therapeutic approaches are needed. Short-range Auger-electron-emitters carry the ability of causing highly damaging radiation effects in cells. The aim of this study was to test the effect of [125I]5-Iodo-2'-deoxyuridine (125I-UdR, a radioactive Auger-electron-emitting thymidine analogue) Auger-therapy on immature glioblastoma spheroid cultures and orthotopic xenografted glioblastoma-bearing rats, the latter by means of convection-enhanced delivery (CED). Moreover, we aimed to determine if the therapeutic effect could be enhanced when combining 125I-UdR therapy with the currently used first-line chemotherapeutic agent temozolomide. 125I-UdR significantly decreased glioblastoma cell viability and migration in vitro and the cell viability was further decreased by co-treatment with methotrexate and/or temozolomide. Intratumoral CED of methotrexate and 125I-UdR with and without concomitant systemic temozolomide chemotherapy significantly reduced the tumor burden in orthotopically xenografted glioblastoma-bearing nude rats. Thus, 100% (8/8) of the animals survived the entire observation period of 180 days when subjected to the combined Auger-chemotherapy while 57% (4/7) survived after the Auger-therapy alone. No animals (0/8) treated with temozolomide alone survived longer than 50 days. Blood samples and post-mortem histology showed no signs of dose-limiting adverse effects. In conclusion, the multidrug approach consisting of CED of methotrexate and 125I-UdR with concomitant systemic temozolomide was safe and very effective leading to 100% survival in an orthotopic xenograft glioblastoma model. Therefore, this therapeutic strategy may be a promising option for future glioblastoma therapy.


Subject(s)
Antineoplastic Agents/administration & dosage , Glioblastoma/radiotherapy , Heterografts , Idoxuridine/administration & dosage , Radiotherapy/methods , Animals , Dacarbazine/administration & dosage , Dacarbazine/analogs & derivatives , Disease Models, Animal , Drug Therapy, Combination , Methotrexate/administration & dosage , Rats, Nude , Survival Analysis , Temozolomide , Treatment Outcome
11.
Nucl Med Biol ; 43(1): 42-51, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26702786

ABSTRACT

INTRODUCTION: NS9531, NS9762 and NS6417 are nitroquinolinyl-diazabicyclo-alkane derivatives that have been developed as inhibitors of serotonin reuptake transporters (SERT) by NeuroSearch A/S. METHODS: IC50 was measured on the up-take of serotonin, dopamine and noradrenaline in synaptosomes prepared from selected rat brain regions. For the pre-clinical evaluation in pigs, [(11)C]NS9531, [(11)C]NS9762 and [(11)C]NS6417 were prepared by N-methylation using [(11)C]methyl iodide. These syntheses were later on optimized regarding: 1) choice of labelled precursor; 2) HPLC purification conditions; and 3) formulation using SPE columns. The synthesis protocols were then fully automated on a GE FXc Pro. Preclinical evaluation was performed by PET studies in landrace pigs before and after treatment with citalopram. RESULTS: IC50 measurements showed that all three compounds have low nanomolar affinity for SERT, and micromolar affinity for DAT and NET. The radiochemical yield (r.y.) of all three ligands from [(11)C]methyl iodide was higher than 30%. From [(11)C]methyl triflate, the r.y. of [(11)C]NS9531 and [(11)C]NS9762 were higher than 80% whereas the r.y. of [(11)C]NS6417 was 65%. Residual precursor amounts in final products could be significantly reduced by the use of [(11)C]methyl triflate, <0.2 µg compared with <10 µg, calculated for a 300 MBq injection at 20 minutes EOS. The optimized conditions gave 2.5-4.5 GBq of products with a specific radioactivity of 20-70 MBq/nmol, residual acetonitrile 15-30 ppm, and pH 6.5-7.1. All three compounds showed a rapid and comparable high pig brain uptake of about 3%, producing PET images of good contrast, and uptake was reduced after pre-administration with citalopram. CONCLUSION: The three (11)C labelled PET tracers could be prepared in medium to high yield and high purity. IC50 measurements showed that the three NS compounds were highly selective, high affinity SERT inhibitors. PET studies in pig showed high brain uptake that could be blocked by citalopram pre-treatment.


Subject(s)
Carbon Radioisotopes , Mesylates/chemistry , Nitroquinolines/chemistry , Nitroquinolines/chemical synthesis , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Serotonin Plasma Membrane Transport Proteins/metabolism , Animals , Chemistry Techniques, Synthetic , Chemistry, Pharmaceutical , Female , Hydrocarbons, Iodinated/chemistry , Isotope Labeling , Positron-Emission Tomography , Quality Control , Radioactive Tracers , Rats , Swine
12.
Mol Imaging Biol ; 18(3): 368-76, 2016 06.
Article in English | MEDLINE | ID: mdl-26561028

ABSTRACT

PURPOSE: The purpose of this study was to apply an analogue of bombesin, NOTA-AMBA, labeled with Co-55 or Ga-68, for preclinical imaging of prostate cancer. PROCEDURES: The peptide NOTA-AMBA was labeled with Ga-68 or Co-55 by microwave irradiation. Biodistribution in xenograft mice (PC3) was performed at 1, 4, and 24 h (only cobalt at 24 h) using a fixed amount of peptide. Four weeks post-inoculation, xenograft mice were positron emission tomography/X-ray computed tomography scanned after tail vein injection of [(68)Ga]NOTA-AMBA or [(55)Co]NOTA-AMBA. RESULTS: Labeling with Ga-68 and Co-55/57 was achieved in yields greater than 90 %. A radiochemical purity (RCP) of 95 and 90 % were obtained for Ga-68 and Co-55, respectively. Both radiopeptides showed high uptake in the intestines, stomach, pancreas, and in the tumor ([(68)Ga]NOTA-AMBA, 10.3 %ID/g at 1 h to 6.4 %ID/g at 4 h; [(57)Co]NOTA-AMBA, 8.2 %ID/g at 1 h to 5.3%ID/g at 24 h). Normal tissue cleared over time improving tumor-to-background ratios. CONCLUSIONS: NOTA-AMBA was labeled in high yields and RCP with Ga-68 and Co-55/57. High tumor uptake in a subcutaneous mouse prostate cancer model was observed. At 24 h, [(55/57)Co]NOTA-AMBA showed better tumor-to-organ ratios than [(68)Ga]NOTA-AMBA at both 1 and 4 h post-injection. Hence, for imaging, [(55)Co]NOTA-AMBA was found to be superior compared to [(68)Ga]NOTA-AMBA.


Subject(s)
Bombesin/analogs & derivatives , Cobalt Radioisotopes/chemistry , Gallium Radioisotopes/chemistry , Radiopharmaceuticals/chemistry , Animals , Binding, Competitive , Cell Line, Tumor , Chromatography, High Pressure Liquid , Humans , Inhibitory Concentration 50 , Male , Mice, SCID , Peptides/blood , Peptides/chemistry , Positron-Emission Tomography , Protein Stability , Tissue Distribution , Tomography, X-Ray Computed , Xenograft Model Antitumor Assays
13.
PLoS One ; 10(4): e0122201, 2015.
Article in English | MEDLINE | ID: mdl-25837626

ABSTRACT

Understanding spatial and temporal patterns of bioirrigation induced by benthic fauna ventilation is critical given its significance on benthic nutrient exchange and biogeochemistry in coastal ecosystems. The quantification of this process challenges marine scientists because faunal activities and behaviors are concealed in an opaque sediment matrix. Here, we use a hybrid medical imaging technique, positron emission tomography and computed tomography (PET/CT) to provide a qualitative visual and fully quantitative description of bioirrigation in 4D (space and time). As a study case, we present images of porewater advection induced by the well-studied lugworm (Arenicola marina). Our results show that PET/CT allows more comprehensive studies on ventilation and bioirrigation than possible using techniques traditionally applied in marine ecology. We provide a dynamic three-dimensional description of bioirrigation by the lugworm at very high temporal and spatial resolution. Results obtained with the PET/CT are in agreement with literature data on lugworm ventilation and bioirrigation. Major advantages of PET/CT over methods commonly used are its non-invasive and non-destructive approach and its capacity to provide information that otherwise would require multiple methods. Furthermore, PET/CT scan is versatile as it can be used for a variety of benthic macrofauna species and sediment types and it provides information on burrow morphology or animal behavior. The lack of accessibility to the expensive equipment is its major drawback which can only be overcome through collaboration among several institutions.


Subject(s)
Ecosystem , Geologic Sediments , Polychaeta/physiology , Animals , Behavior, Animal , Feeding Behavior , Groundwater , Imaging, Three-Dimensional/methods , Marine Biology/methods , Positron-Emission Tomography/methods , Respiration , Tomography, X-Ray Computed/methods
14.
J Nucl Med ; 55(8): 1311-6, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24876207

ABSTRACT

UNLABELLED: The somatostatin receptor, which is overexpressed by many neuroendocrine tumors, is a well-known target for molecular imaging and peptide receptor radionuclide therapy. Recently, (57)Co-labeled DOTATOC, an octreotide analog, was shown to have the highest affinity yet found for somatostatin receptor subtype 2. The aim of this study was to evaluate the biologic effects of novel cobalt-labeled octreotide analogs targeting the somatostatin receptor to identify promising candidates for molecular imaging and Auger electron-based radionuclide therapy. METHODS: Cobalt-labeled DOTATATE, DOTATOC, and DOTANOC were prepared with (57)Co or (58m)Co for SPECT or Auger electron-based therapy, respectively. The cellular uptake and intracellular distribution of the radioligands were characterized with the pancreatic tumor cell line AR42J in vitro, including assessment of the therapeutic effects of (58m)Co-DOTATATE via DNA double-strand break and proliferation assays. Comparisons with the therapeutic effects of (111)In- and (177)Lu-DOTATATE were also performed. Tumor uptake and normal tissue uptake were characterized in a subcutaneous pancreatic tumor mouse model. RESULTS: All 3 cobalt-conjugated peptides resulted in time-dependent and receptor-specific uptake, with a high level (≥88%) of cellular internalization in vitro of the total cell-associated radioactivity. The DNA double-strand break yield showed a dose-dependent increase with activity, whereas cell survival showed a dose-dependent decrease. (58m)Co-DOTATATE was significantly more efficient in cell killing per cumulated decay than (111)In- and (177)Lu-DOTATATE. The in vivo pharmacokinetic studies showed a high level of receptor-specific tumor uptake. CONCLUSION: All cobalt-labeled radioligands showed a high level of receptor-specific uptake both in vitro and in vivo in tumor-bearing mice. Furthermore, (58m)Co-DOTATATE showed considerable therapeutic effects in vitro and, thus, could be an effective agent for eradicating disseminated tumor cells and micrometastases.


Subject(s)
Electrons , Molecular Imaging/methods , Octreotide/therapeutic use , Radiotherapy/methods , Animals , Cell Line, Tumor , Cell Proliferation/radiation effects , Cobalt Radioisotopes/therapeutic use , DNA Breaks, Double-Stranded/radiation effects , Female , Mice , Octreotide/analogs & derivatives , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/radiotherapy , Rats , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed
15.
Chemistry ; 16(23): 6820-7, 2010 Jun 18.
Article in English | MEDLINE | ID: mdl-20437429

ABSTRACT

The direct synthesis of amides from alcohols and amines is described with the simultaneous liberation of dihydrogen. The reaction does not require any stoichiometric additives or hydrogen acceptors and is catalyzed by ruthenium N-heterocyclic carbene complexes. Three different catalyst systems are presented that all employ 1,3-diisopropylimidazol-2-ylidene (IiPr) as the carbene ligand. In addition, potassium tert-butoxide and a tricycloalkylphosphine are required for the amidation to proceed. In the first system, the active catalyst is generated in situ from [RuCl(2)(cod)] (cod=1,5-cyclooctadiene), 1,3-diisopropylimidazolium chloride, tricyclopentylphosphonium tetrafluoroborate, and base. The second system uses the complex [RuCl(2)(IiPr)(p-cymene)] together with tricyclohexylphosphine and base, whereas the third system employs the Hoveyda-Grubbs 1st-generation metathesis catalyst together with 1,3-diisopropylimidazolium chloride and base. A range of different primary alcohols and amines have been coupled in the presence of the three catalyst systems to afford the corresponding amides in moderate to excellent yields. The best results are obtained with sterically unhindered alcohols and amines. The three catalyst systems do not show any significant differences in reactivity, which indicates that the same catalytically active species is operating. The reaction is believed to proceed by initial dehydrogenation of the primary alcohol to the aldehyde that stays coordinated to ruthenium and is not released into the reaction mixture. Addition of the amine forms the hemiaminal that undergoes dehydrogenation to the amide. A catalytic cycle is proposed with the {(IiPr)Ru(II)} species as the catalytically active components.

16.
J Org Chem ; 73(8): 3228-35, 2008 Apr 18.
Article in English | MEDLINE | ID: mdl-18351780

ABSTRACT

The Barbier allylation of a series of para-substituted benzaldehydes with allylbromide in the presence of Zn, In, Sn, Sb, Bi, and Mg was investigated using competition experiments. In all cases, the slope of the Hammett plots indicated a build-up of negative charge in the selectivity-determining step. For Zn, In, Sn, Sb, and Bi, an inverse secondary kinetic isotope effect was found (kH/kD = 0.75-0.95), which was compatible with the formation of a discrete organometallic species prior to allylation via a closed six-membered transition state. With Mg, a significantly larger build-up of negative charge along with a small positive secondary kinetic isotope effect (kH/kD = 1.06) indicated that the selectivity-determining step was the generation of the radical anion of benzaldehyde. The reaction through a six-membered transition state was modeled using density functional theory with the effect of solvent described by a polarized continuum model. The calculated secondary deuterium isotope effects based on this mechanism were found to be in good agreement with experimental values, thus adding further support to this mechanistic scenario.

SELECTION OF CITATIONS
SEARCH DETAIL
...