Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.134
Filter
1.
Med Sci Sports Exerc ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949160

ABSTRACT

INTRODUCTION: Epigenetic aging, a marker of biological aging measured by DNA methylation, may be affected by behaviors, including sleep and physical activity. However, investigations of physical activity and sleep with epigenetic aging among pediatric populations are scant and have not accounted for correlated behaviors. METHODS: The study population included 472 Mexico City adolescents (52% female). Blood collection and 7-day wrist actigraphy (Actigraph GTX-BT) occurred during a follow-up visit when participants were 14.5 (2.09) years. Leukocyte DNA methylation was measured with the Infinium MethylationEPIC array after bisulfite conversion, and 9 epigenetic clocks were calculated. Sleep vs wake time was identified through a pruned dynamic programing algorithm, and physical activity was processed with Chandler cut-offs. Kmeans clustering was used to select actigraphy-assessed physical activity and sleep behavior clusters. Linear regression analyses were used to evaluate adjusted associations between the clusters and epigenetic aging. RESULTS: There were 3 unique clusters: "Short sleep/high sedentary behavior", "Adequate sleep duration and late timing/low moderate or vigorous physical activity (MVPA)", and "Adequate sleep duration/high MVPA". Compared to the "Adequate duration/high MVPA", adolescents with "Adequate duration and late sleep timing/low MVPA" had more accelerated aging for the GrimAge clock (ß = 0.63;95% CI 0.07, 1.19). In pubertal-stratified analyses, more mature adolescents in the "Adequate duration and late sleep timing/low MVPA group" had accelerated epigenetic aging. In contrast, females in the "Short sleep/high sedentary" group had decelerated epigenetic aging for the Wu pediatric clock. CONCLUSIONS: Associations between behavior clusters and epigenetic aging varied by pubertal status and sex. Contrary results in the Wu clock suggest the need for future research on pediatric-specific clocks.

2.
Brain Behav ; 14(7): e3590, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38956812

ABSTRACT

OBJECTIVE: Chronic subdural hematoma (CSDH) is a common neurological condition and is typically treated with burr hole craniostomy. Nevertheless, conservative treatment may lead to spontaneous hematoma resolution in some patients. This study aims to describe the characteristics of patients who were treated conservatively without the eventual need for additional treatment. METHODS: Data were retrospectively collected from patients who were primarily treated conservatively in three hospitals in the Netherlands from 2008 to 2018. The Primary outcome was the nonnecessity of additional treatment within 3 months after the initial CSDH diagnosis. We used univariable and multivariable logistic regression analyses to identify factors associated with not receiving additional treatment. RESULTS: In this study, 83 patients were included and 61 patients (73%) did not receive additional treatment within 3 months. Upon first presentation, the patients had a Markwalder Grading Scale score (MGS) of 0 (n = 5, 6%), 1 (n = 43, 52%), and 2 (n = 35, 42%). Additional treatment was less often received by patients with smaller hematoma volumes (adjusted odds ratio [aOR] 0.78 per 10 mL; 95% confidence interval [CI] 0.64-0.92). Patients using antithrombotic medication also received less additional treatment, but this association was not significant (aOR 2.02; 95% CI 0.61-6.69). CONCLUSIONS: Three quarters of the initially conservatively treated CSDH patients do not receive additional management. Typically, these patients have smaller hematoma volumes. Further, prospective research is needed to distinguish which patients require surgical intervention and in whom primary conservative treatment suffices.


Subject(s)
Conservative Treatment , Hematoma, Subdural, Chronic , Humans , Hematoma, Subdural, Chronic/therapy , Male , Female , Conservative Treatment/methods , Retrospective Studies , Aged , Aged, 80 and over , Middle Aged , Netherlands
3.
Clin Transl Sci ; 17(7): e13871, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38943244

ABSTRACT

Electronic health records (EHRs) contain a vast array of phenotypic data on large numbers of individuals, often collected over decades. Due to the wealth of information, EHR data have emerged as a powerful resource to make first discoveries and identify disparities in our healthcare system. While the number of EHR-based studies has exploded in recent years, most of these studies are directed at associations with disease rather than pharmacotherapeutic outcomes, such as drug response or adverse drug reactions. This is largely due to challenges specific to deriving drug-related phenotypes from the EHR. There is great potential for EHR-based discovery in clinical pharmacology research, and there is a critical need to address specific challenges related to accurate and reproducible derivation of drug-related phenotypes from the EHR. This review provides a detailed evaluation of challenges and considerations for deriving drug-related data from EHRs. We provide an examination of EHR-based computable phenotypes and discuss cutting-edge approaches to map medication information for clinical pharmacology research, including medication-based computable phenotypes and natural language processing. We also discuss additional considerations such as data structure, heterogeneity and missing data, rare phenotypes, and diversity within the EHR. By further understanding the complexities associated with conducting clinical pharmacology research using EHR-based data, investigators will be better equipped to design thoughtful studies with more reproducible results. Progress in utilizing EHRs for clinical pharmacology research should lead to significant advances in our ability to understand differential drug response and predict adverse drug reactions.


Subject(s)
Electronic Health Records , Pharmacology, Clinical , Electronic Health Records/statistics & numerical data , Humans , Pharmacology, Clinical/methods , Phenotype , Natural Language Processing , Biomedical Research , Drug-Related Side Effects and Adverse Reactions/prevention & control , Drug-Related Side Effects and Adverse Reactions/epidemiology
4.
Physiol Rep ; 12(12): e16090, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38884325

ABSTRACT

Adverse effects of large artery stiffening are well established in the systemic circulation; stiffening of the proximal pulmonary artery (PPA) and its sequelae are poorly understood. We combined in vivo (n = 6) with ex vivo data from cadavers (n = 8) and organ donors (n = 13), ages 18 to 89, to assess whether aging of the PPA associates with changes in distensibility, biaxial wall strain, wall thickness, vessel diameter, and wall composition. Aging exhibited significant negative associations with distensibility and cyclic biaxial strain of the PPA (p ≤ 0.05), with decreasing circumferential and axial strains of 20% and 7%, respectively, for every 10 years after 50. Distensibility associated directly with diffusion capacity of the lung (R2 = 0.71, p = 0.03). Axial strain associated with right ventricular ejection fraction (R2 = 0.76, p = 0.02). Aging positively associated with length of the PPA (p = 0.004) and increased luminal caliber (p = 0.05) but showed no significant association with mean wall thickness (1.19 mm, p = 0.61) and no significant differences in the proportions of mural elastin and collagen (p = 0.19) between younger (<50 years) and older (>50) ex vivo samples. We conclude that age-related stiffening of the PPA differs from that of the aorta; microstructural remodeling, rather than changes in overall geometry, may explain age-related stiffening.


Subject(s)
Aging , Pulmonary Artery , Vascular Stiffness , Humans , Pulmonary Artery/physiology , Aged , Male , Female , Middle Aged , Adult , Aging/physiology , Aged, 80 and over , Adolescent , Vascular Stiffness/physiology , Young Adult , Elastin/metabolism
5.
Cureus ; 16(4): e58542, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38887511

ABSTRACT

The Y chromosome has gained significant importance in the examination of genetic studies of populations because of its non-recombinant character and its form of uniparental inheritance. This work seeks to offer a comprehensive review of the specialty literature in the field of population genetics, focusing specifically on the analysis of the human Y chromosome using a bibliometric approach and knowledge mapping. This involves establishing worldwide structural networks by identifying the primary research themes, authors, and papers that have had a significant impact on the academic community. The objective is to examine global publications by analyzing citations at both the document and country level. This will involve conducting co-citation analysis for references with a high number of citations, examining bibliographic coupling through journal analysis, analyzing the co-occurrence of keywords, and investigating collaboration between authors from a country perspective. The research papers have been extracted from the Web of Science database. The bibliometric analysis was performed using the Bibliometrix and VOSviewer software tools. The purpose of this article is to serve as a starting point for future research dedicated to the analysis of the diversity of human Y chromosome haplotypes. The objectives of the study were to identify and present the most cited publications and references with the highest number of citations, and to highlight current publications at the national level.

6.
Cureus ; 16(6): e62505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887750

ABSTRACT

BACKGROUND: Y chromosome analysis is used in various fields of forensic genetics, genetic genealogy, and evolutionary research, due to its unique characteristics. Short tandem repetitions (STR) are particularly relevant in population genetic studies. The aim of this study is to analyze the genetic profile of two populations in the Apuseni Mountains area, Baița and Roșia Montana, Romania. METHODS: 27 STR loci of the Y chromosome were analyzed to investigate the genetic profile of two populations from the Apuseni Mountains area. Investigating genetic diversity by analyzing allele frequency, haplotype frequency, calculating forensic parameters, and presenting the main haplogroups identified based on Y-STR markers. RESULTS: Gene diversity in the batch from Baița varies from 0.515 for the DYS393 locus to 0.947 for the DYS385 locus. In the Roșia Montana population, gene diversity ranges from 0.432 for DYS393 to 0.931 for DYS385. The haplotype diversity in Roșia Montana was 0.991, and the haplotype diversity was 1.000 in the population from Baița. A total of nine haplogroups was identified in the batch from Baița, while only seven haplogroups were observed in the batch from Roșia Montana. Both groups are based on the same five major haplogroups (E, G, I, J, and R) and the most common haplogroup is R1b in both populations. CONCLUSION: In this study, the genetic diversity of two distinct populations was assessed using genetic analyses based on different markers. Analysis of Y-STR profiles revealed significant genetic diversity in both studied groups. All haplogroups identified were similar to those present in other Romanian populations.

7.
Environ Health Perspect ; 132(6): 67003, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833407

ABSTRACT

BACKGROUND: Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. It is unknown whether epigenetic changes in surrogate tissues such as the blood are reflective of similar changes in target tissues such as cortex or liver. OBJECTIVE: We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. METHODS: Female mice were exposed to human relevant doses of either Pb (32 ppm) via drinking water or DEHP (5mg/kg-day) via chow for 2 weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and ChIP-enrich were used for genomic annotations and gene set enrichment tests of DMRs, respectively. RESULTS: The cortex contained the majority of DMRs associated with Pb (66%) and DEHP (57%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n=13 and 8 DMRs with Pb and DEHP exposure, respectively) and exposure types (n=55 and 39 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures, with some signatures replicated between target and surrogate tissues. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, and we again observed a replication of DMR signatures between blood and target tissues. Specifically, we observed hypermethylation of the Grb10 ICR in both blood and liver of Pb-exposed male animals. CONCLUSIONS: These data provide preliminary evidence that imprinted genes may be viable candidates in the search for epigenetic biomarkers of toxicant exposure in target tissues. Additional research is needed on allele- and developmental stage-specific effects, as well as whether other imprinted genes provide additional examples of this relationship. https://doi.org/10.1289/EHP14074.


Subject(s)
DNA Methylation , Genomic Imprinting , Lead , Liver , Animals , DNA Methylation/drug effects , Mice , Female , Liver/drug effects , Male , Lead/toxicity , Lead/blood , Genomic Imprinting/drug effects , Diethylhexyl Phthalate/toxicity , Brain/drug effects , Environmental Pollutants/toxicity , Maternal Exposure , Phthalic Acids/toxicity , Pregnancy , Prenatal Exposure Delayed Effects , Epigenesis, Genetic/drug effects
8.
J Neurosci ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918066

ABSTRACT

The ventrolateral medulla (VLM) is a crucial region in the brain for visceral and somatic control, serving as a significant source of synaptic input to the spinal cord. Experimental studies have shown that gene expression in individual VLM neurons is predictive of their function. However, the molecular and cellular organization of the VLM has remained uncertain. This study aimed to create a comprehensive dataset of VLM cells using single-cell RNA sequencing in male and female mice. The dataset was enriched with targeted sequencing of spinally-projecting and adrenergic/noradrenergic VLM neurons. Based on differentially expressed genes, the resulting dataset of 114,805 VLM cells identifies 23 subtypes of neurons, excluding those in the inferior olive, and 5 subtypes of astrocytes. Spinally-projecting neurons were found to be abundant in 7 subtypes of neurons, which were validated through in-situ hybridization. These subtypes included adrenergic/noradrenergic neurons, serotonergic neurons, and neurons expressing gene markers associated with pre-motor neurons in the ventromedial medulla. Further analysis of adrenergic/noradrenergic neurons and serotonergic neurons identified 9 and 6 subtypes, respectively, within each class of monoaminergic neurons. Marker genes that identify the neural network responsible for breathing were concentrated in 2 subtypes of neurons, delineated from each other by markers for excitatory and inhibitory neurons. These datasets are available for public download and for analysis with a user-friendly interface. Collectively, this study provides a fine-scale molecular identification of cells in the VLM, forming the foundation for a better understanding of the VLM's role in vital functions and motor control.Significance statement The ventrolateral medulla (VLM) is an anatomically complex region of the brain that plays a crucial role in regulating vital functions, including autonomic and respiratory control, sleep-wake behaviors, cranial motor functions, and locomotion. This study comprehensively classifies VLM cell types and neuronal subtypes based on their molecular and anatomical features, by leveraging single-nuclei RNA sequencing, RNA fluorescence in situ hybridization, and axonal tract tracing. We present a dataset comprising 114,805 single-nuclei transcriptomes that identifies and validates the precise molecular characteristics of neurons involved in autonomic and motor systems functions. This publicly-available dataset offers new opportunities for comprehensive experimental studies to dissect the central organization of vital homeostatic functions and body movement.

10.
bioRxiv ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38712146

ABSTRACT

Background: Global and site-specific changes in DNA methylation and gene expression are associated with cardiovascular aging and disease, but how toxicant exposures during early development influence the normal trajectory of these age-related molecular changes, and whether there are sex differences, has not yet been investigated. Objectives: We used an established mouse model of developmental exposures to investigate the effects of perinatal exposure to either lead (Pb) or diethylhexyl phthalate (DEHP), two ubiquitous environmental contaminants strongly associated with CVD, on age-related cardiac DNA methylation and gene expression. Methods: Dams were randomly assigned to receive human physiologically relevant levels of Pb (32 ppm in water), DEHP (25 mg/kg chow), or control water and chow. Exposures started two weeks prior to mating and continued until weaning at postnatal day 21 (3 weeks of age). Approximately one male and one female offspring per litter were followed to 3 weeks, 5 months, or 10 months of age, at which time whole hearts were collected (n ≥ 5 per sex per exposure). Enhanced reduced representation bisulfite sequencing (ERRBS) was used to assess the cardiac DNA methylome at 3 weeks and 10 months, and RNA-seq was conducted at all 3 time points. MethylSig and edgeR were used to identify age-related differentially methylated regions (DMRs) and differentially expressed genes (DEGs), respectively, within each sex and exposure group. Cell type deconvolution of bulk RNA-seq data was conducted using the MuSiC algorithm and publicly available single cell RNA-seq data. Results: Thousands of DMRs and hundreds of DEGs were identified in control, DEHP, and Pb-exposed hearts across time between 3 weeks and 10 months of age. A closer look at the genes and pathways showing differential DNA methylation revealed that the majority were unique to each sex and exposure group. Overall, pathways governing development and differentiation were most frequently altered with age in all conditions. A small number of genes in each group showed significant changes in DNA methylation and gene expression with age, including several that were altered by both toxicants but were unchanged in control. We also observed subtle, but significant changes in the proportion of several cell types due to age, sex, and developmental exposure. Discussion: Together these data show that perinatal Pb or DEHP exposures deflect normal age-related gene expression, DNA methylation programs, and cellular composition across the life course, long after cessation of exposure, and highlight potential biomarkers of developmental toxicant exposures. Further studies are needed to investigate how these epigenetic and transcriptional changes impact cardiovascular health across the life course.

11.
Magn Reson Med ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38817154

ABSTRACT

PURPOSE: Tricuspid valve flow velocities are challenging to measure with cardiovascular MR, as the rapidly moving valvular plane prohibits direct flow evaluation, but they are vitally important to diastolic function evaluation. We developed an automated valve-tracking 2D method for measuring flow through the dynamic tricuspid valve. METHODS: Nine healthy subjects and 2 patients were imaged. The approach uses a previously trained deep learning network, TVnet, to automatically track the tricuspid valve plane from long-axis cine images. Subsequently, the tracking information is used to acquire 2D phase contrast (PC) with a dynamic (moving) acquisition plane that tracks the valve. Direct diastolic net flows evaluated from the dynamic PC sequence were compared with flows from 2D-PC scans acquired in a static slice localized at the end-systolic valve position, and also ventricular stroke volumes (SVs) using both planimetry and 2D PC of the great vessels. RESULTS: The mean tricuspid valve systolic excursion was 17.8 ± 2.5 mm. The 2D valve-tracking PC net diastolic flow showed excellent correlation with SV by right-ventricle planimetry (bias ± 1.96 SD = -0.2 ± 10.4 mL, intraclass correlation coefficient [ICC] = 0.92) and aortic PC (-1.0 ± 13.8 mL, ICC = 0.87). In comparison, static tricuspid valve 2D PC also showed a strong correlation but had greater bias (p = 0.01) versus the right-ventricle SV (10.6 ± 16.1 mL, ICC = 0.61). In most (8 of 9) healthy subjects, trace regurgitation was measured at begin-systole. In one patient, valve-tracking PC displayed a high-velocity jet (380 cm/s) with maximal velocity agreeing with echocardiography. CONCLUSION: Automated valve-tracking 2D PC is a feasible route toward evaluation of tricuspid regurgitant velocities, potentially solving a major clinical challenge.

12.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766167

ABSTRACT

To distinguish DNA methylation (DNAm) from cell proportion changes in whole placental tissue research, we developed a robust cell type-specific DNAm reference to estimate cell composition. We collated newly collected and existing cell type DNAm profiles quantified via Illumina EPIC or 450k microarrays. To estimate cell composition, we deconvoluted whole placental samples (n=36) with robust partial correlation based on the top 50 hyper- and hypomethylated sites per cell type. To test deconvolution performance, we evaluated RMSE in predicting principal component one of DNAm variation in 204 external placental samples. We analyzed DNAm profiles (n=368,435 sites) from 12 cell types: cytotrophoblasts (n=18), endothelial cells (n=19), Hofbauer cells (n=26), stromal cells (n=21), syncytiotrophoblasts (n=4), six lymphocyte types (n=36), and nucleated red blood cells (n=11). Median cell composition was consistent with placental biology: 60.4% syncytiotrophoblast, 17.1% stromal, 8.8% endothelial, 4.5% cytotrophoblast, 3.9% Hofbauer, 1.7% nucleated red blood cells, and 1.2% neutrophils. Our expanded reference outperformed an existing reference in predicting DNAm variation (15.4% variance explained, IQR=21.61) with cell composition estimates (RMSE:10.51 vs. 11.43, p-value<0.001). This cell type reference can robustly estimate cell composition from whole placental DNAm data to detect important cell types, reveal biological mechanisms, and improve casual inference.

13.
Immunology ; 172(4): 627-640, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38736328

ABSTRACT

Invariant natural killer T (iNKT) cells are a conserved population of innate T lymphocytes that are uniquely suitable as off-the-shelf cellular immunotherapies due to their lack of alloreactivity. Two major subpopulations of human iNKT cells have been delineated, a CD4- subset that has a TH1/cytolytic profile, and a CD4+ subset that appears polyfunctional and can produce both regulatory and immunostimulatory cytokines. Whether these two subsets differ in anti-tumour effects is not known. Using live cell imaging, we found that CD4- iNKT cells limited growth of CD1d+ Epstein-Barr virus (EBV)-infected B-lymphoblastoid spheroids in vitro, whereas CD4+ iNKT cells showed little or no direct anti-tumour activity. However, the effects of the two subsets were reversed when we tested them as adoptive immunotherapies in vivo using a xenograft model of EBV-driven human B cell lymphoma. We found that EBV-infected B cells down-regulated CD1d in vivo, and administering CD4- iNKT cells had no discernable impact on tumour mass. In contrast, xenotransplanted mice bearing lymphomas showed rapid reduction in tumour mass after administering CD4+ iNKT cells. Immunotherapeutic CD4+ iNKT cells trafficked to both spleen and tumour and were associated with subsequently enhanced responses of xenotransplanted human T cells against EBV. CD4+ iNKT cells also had adjuvant-like effects on monocyte-derived DCs and promoted antigen-dependent responses of human T cells in vitro. These results show that allogeneic CD4+ iNKT cellular immunotherapy leads to marked anti-tumour activity through indirect pathways that do not require tumour cell CD1d expression and that are associated with enhanced activity of antigen-specific T cells.


Subject(s)
Antigens, CD1d , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Immunotherapy, Adoptive , Lymphoma, B-Cell , Natural Killer T-Cells , Antigens, CD1d/metabolism , Antigens, CD1d/immunology , Humans , Animals , Natural Killer T-Cells/immunology , Immunotherapy, Adoptive/methods , Herpesvirus 4, Human/immunology , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/therapy , Mice , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/therapy , Xenograft Model Antitumor Assays , Cell Line, Tumor , Mice, SCID , Mice, Inbred NOD
14.
iScience ; 27(6): 109934, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38799579

ABSTRACT

Temperature is increasing globally, and vector-borne diseases are particularly responsive to such increases. While it is known that temperature influences mosquito life history traits, transmission models have not historically considered population-specific effects of temperature. We assessed the interaction between Culex pipiens population and temperature in New York State (NYS) and utilized novel empirical data to inform predictive models of West Nile virus (WNV) transmission. Genetically and regionally distinct populations from NYS were reared at various temperatures, and life history traits were monitored and used to inform trait-based models. Variation in Cx. pipiens life history traits and population-dependent thermal responses account for a predicted 2.9°C difference in peak transmission that is reflected in regional differences in WNV prevalence. We additionally identified genetic signatures that may contribute to distinct thermal responses. Together, these data demonstrate how population variation contributes to significant geographic variability in arbovirus transmission with changing climates.

15.
J Ment Health ; : 1-10, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572918

ABSTRACT

BACKGROUND: The long-term mental and physical health implications of childhood interpersonal trauma on adult survivors is immense, however, there is a lack of available trauma-focused treatment services that are widely accessible. This study, utilizing a user-centered design process, sought feedback on the initial design and development of a novel, self-paced psychoeducation and skills-based treatment intervention for this population. AIMS: To explore the views and perspectives of adult survivors of childhood interpersonal trauma on the first two modules of an asynchronous trauma-focused treatment program. METHODS: Fourteen participants from our outpatient hospital service who completed the modules consented to provide feedback on their user experience. A thematic analysis of the three focus groups was conducted. RESULTS: Four major themes emerged from the focus groups: (1) technology utilization, (2) module content, (3) asynchronous delivery, and (4) opportunity for interactivity. Participants noted the convenience of the platform and the use of multimedia content to increase engagement and did not find the modules to be emotionally overwhelming. CONCLUSIONS: Our research findings suggest that an asynchronous virtual intervention for childhood interpersonal trauma survivors may be a safe and acceptable way to provide a stabilization-focused intervention on a wider scale.

16.
BMC Genomics ; 25(1): 347, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580927

ABSTRACT

BACKGROUND: The ascomycete fungus Anisogramma anomala causes Eastern Filbert Blight (EFB) on hazelnut (Corylus spp.) trees. It is a minor disease on its native host, the American hazelnut (C. americana), but is highly destructive on the commercially important European hazelnut (C. avellana). In North America, EFB has historically limited commercial production of hazelnut to west of the Rocky Mountains. A. anomala is an obligately biotrophic fungus that has not been grown in continuous culture, rendering its study challenging. There is a 15-month latency before symptoms appear on infected hazelnut trees, and only a sexual reproductive stage has been observed. Here we report the sequencing, annotation, and characterization of its genome. RESULTS: The genome of A. anomala was assembled into 108 scaffolds totaling 342,498,352 nt with a GC content of 34.46%. Scaffold N50 was 33.3 Mb and L50 was 5. Nineteen scaffolds with lengths over 1 Mb constituted 99% of the assembly. Telomere sequences were identified on both ends of two scaffolds and on one end of another 10 scaffolds. Flow cytometry estimated the genome size of A. anomala at 370 Mb. The genome exhibits two-speed evolution, with 93% of the assembly as AT-rich regions (32.9% GC) and the other 7% as GC-rich (57.1% GC). The AT-rich regions consist predominantly of repeats with low gene content, while 90% of predicted protein coding genes were identified in GC-rich regions. Copia-like retrotransposons accounted for more than half of the genome. Evidence of repeat-induced point mutation (RIP) was identified throughout the AT-rich regions, and two copies of the rid gene and one of dim-2, the key genes in the RIP mutation pathway, were identified in the genome. Consistent with its homothallic sexual reproduction cycle, both MAT1-1 and MAT1-2 idiomorphs were found. We identified a large suite of genes likely involved in pathogenicity, including 614 carbohydrate active enzymes, 762 secreted proteins and 165 effectors. CONCLUSIONS: This study reveals the genomic structure, composition, and putative gene function of the important pathogen A. anomala. It provides insight into the molecular basis of the pathogen's life cycle and a solid foundation for studying EFB.


Subject(s)
Ascomycota , Corylus , Corylus/genetics , Ascomycota/genetics , Phenotype , Genome Size
17.
Magn Reson Imaging ; 110: 176-183, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657714

ABSTRACT

OBJECTIVE: To improve image quality in highly accelerated parameter mapping by incorporating a linear constraint that relates consecutive images. APPROACH: In multi-echo T1 or T2 mapping, scan time is often shortened by acquiring undersampled but complementary measures of k-space at each TE or TI. However, residual undersampling artifacts from the individual images can then degrade the quality of the final parameter maps. In this work, a new reconstruction method, dubbed Constrained Alternating Minimization for Parameter mapping (CAMP), is introduced. This method simultaneously extracts T2 or T1* maps in addition to an image for each TE or TI from accelerated datasets, leveraging the constraints of the decay to improve the reconstructed image quality. The model enforces exponential decay through a linear constraint, resulting in a biconvex objective function that lends itself to alternating minimization. The method was tested in four in vivo volunteer experiments and validated in phantom studies and healthy subjects, using T2 and T1 mapping, with accelerations of up to 12. MAIN RESULTS: CAMP is demonstrated for accelerated radial and Cartesian acquisitions in T2 and T1 mapping. The method is even applied to generate an entire T2 weighted image series from a single TSE dataset, despite the blockwise k-space sampling at each echo time. Experimental undersampled phantom and in vivo results processed with CAMP exhibit reduced artifacts without introducing bias. SIGNIFICANCE: For a wide array of applications, CAMP linearizes the model cost function without sacrificing model accuracy so that the well-conditioned and highly efficient reconstruction algorithm improves the image quality of accelerated parameter maps.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Phantoms, Imaging , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Artifacts , Brain/diagnostic imaging , Reproducibility of Results , Image Enhancement/methods
19.
Front Public Health ; 12: 1345442, 2024.
Article in English | MEDLINE | ID: mdl-38515598

ABSTRACT

Objective: We sought to examine trends in diagnosed behavioral health (BH) conditions [mental health (MH) disorders or substance use disorders (SUD)] among pregnant and postpartum individuals between 2008-2020. We then explored the relationship between BH conditions and race/ethnicity, acknowledging race/ethnicity as a social construct that influences health disparities. Methods: This study included delivering individuals, aged 15-44 years, and continuously enrolled in a single commercial health insurance plan for 1 year before and 1 year following delivery between 2008-2020. We used BH conditions as our outcome based on relevant ICD 9/10 codes documented during pregnancy or the postpartum year. Results: In adjusted analyses, white individuals experienced the highest rates of BH conditions, followed by Black, Hispanic, and Asian individuals, respectively. Asian individuals had the largest increase in BH rates, increasing 292%. White individuals had the smallest increase of 192%. The trend remained unchanged even after adjusting for age and Bateman comorbidity score, the trend remained unchanged. Conclusions: The prevalence of diagnosed BH conditions among individuals in the perinatal and postpartum periods increased over time. As national efforts continue to work toward improving perinatal BH, solutions must incorporate the needs of diverse populations to avert preventable morbidity and mortality.


Subject(s)
Ethnicity , Hispanic or Latino , Adolescent , Adult , Female , Humans , Pregnancy , Young Adult , Asian , Black or African American , Morbidity , White , United States
20.
bioRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496541

ABSTRACT

Objective: Interictal epileptiform spikes, high-frequency ripple oscillations, and their co-occurrence (spike ripples) in human scalp or intracranial voltage recordings are well-established epileptic biomarkers. While clinically significant, the neural mechanisms generating these electrographic biomarkers remain unclear. To reduce this knowledge gap, we introduce a novel photothrombotic stroke model in mice that reproduces focal interictal electrographic biomarkers observed in human epilepsy. Methods: We induced a stroke in the motor cortex of C57BL/6 mice unilaterally (N=7) using a photothrombotic procedure previously established in rats. We then implanted intracranial electrodes (2 ipsilateral and 2 contralateral) and obtained intermittent local field potential (LFP) recordings over several weeks in awake, behaving mice. We evaluated the LFP for focal slowing and epileptic biomarkers - spikes, ripples, and spike ripples - using both automated and semi-automated procedures. Results: Delta power (1-4 Hz) was higher in the stroke hemisphere than the non-stroke hemisphere in all mice ( p <0.001). Automated detection procedures indicated that compared to the non-stroke hemisphere, the stroke hemisphere had an increased spike ripple ( p =0.006) and spike rates ( p =0.039), but no change in ripple rate ( p =0.98). Expert validation confirmed the observation of elevated spike ripple rates ( p =0.008) and a trend of elevated spike rate ( p =0.055) in the stroke hemisphere. Interestingly, the validated ripple rate in the stroke hemisphere was higher than the non-stroke hemisphere ( p =0.031), highlighting the difficulty of automatically detecting ripples. Finally, using optimal performance thresholds, automatically detected spike ripples classified the stroke hemisphere with the best accuracy (sensitivity 0.94, specificity 0.94). Significance: Cortical photothrombosis-induced stroke in commonly used C57BL/6 mice produces electrographic biomarkers as observed in human epilepsy. This model represents a new translational cortical epilepsy model with a defined irritative zone, which can be broadly applied in transgenic mice for cell type specific analysis of the cellular and circuit mechanisms of pathologic interictal activity. Key Points: Cortical photothrombosis in mice produces stroke with characteristic intermittent focal delta slowing.Cortical photothrombosis stroke in mice produces the epileptic biomarkers spikes, ripples, and spike ripples.All biomarkers share morphological features with the corresponding human correlate.Spike ripples better lateralize to the lesional cortex than spikes or ripples.This cortical model can be applied in transgenic mice for mechanistic studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...