Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-455491

ABSTRACT

The number and variability of the neutralizing epitopes targeted by polyclonal antibodies in SARS-CoV-2 convalescent and vaccinated individuals are key determinants of neutralization breadth and, consequently, the genetic barrier to viral escape. Using chimeric viruses and antibody-selected viral mutants, we show that multiple neutralizing epitopes, within and outside the viral receptor binding domain (RBD), are variably targeted by polyclonal plasma antibodies and coincide with sequences that are enriched for diversity in natural SARS-CoV-2 populations. By combining plasma-selected spike substitutions, we generated synthetic polymutant spike proteins that resisted polyclonal antibody neutralization to a similar degree as currently circulating variants of concern (VOC). Importantly, by aggregating VOC-associated and plasma-selected spike substitutions into a single polymutant spike protein, we show that 20 naturally occurring mutations in SARS-CoV-2 spike are sufficient to confer near-complete resistance to the polyclonal neutralizing antibodies generated by convalescents and mRNA vaccine recipients. Strikingly however, plasma from individuals who had been infected and subsequently received mRNA vaccination, neutralized this highly resistant SARS-CoV-2 polymutant, and also neutralized diverse sarbecoviruses. Thus, optimally elicited human polyclonal antibodies against SARS-CoV-2 should be resilient to substantial future SARS-CoV-2 variation and may confer protection against future sarbecovirus pandemics.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-455441

ABSTRACT

Emerging zoonotic viral pathogens threaten global health and there is an urgent need to discover host and viral determinants influencing infection. We performed a loss-of-function genome-wide CRISPR screen in a human lung cell line using HCoV-OC43, a human betacoronavirus. One candidate gene, VPS29, was required for infection by HCoV-OC43, SARS-CoV-2, other endemic and pandemic threat coronaviruses as well as ebolavirus. However, VPS29 deficiency had no effect on certain other viruses that enter cells via endosomes and had an opposing, enhancing effect on influenza A virus infection. VPS29 deficiency caused changes endosome morphology, and acidity and attenuated the activity of endosomal proteases. These changes in endosome properties caused incoming coronavirus, but not influenza virus particles, to become entrapped therein. Overall, these data show how host regulation of endosome characteristics can influence viral susceptibility and identify a host pathway that could serve as a pharmaceutical target for intervention in zoonotic viral diseases.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21255596

ABSTRACT

BackgroundSero-surveillance of SARS-CoV-2 is crucial to monitoring levels of population exposure and informing public health responses, but may be influenced by variability in performance between available assays. MethodsFive commercial immunoassays and a neutralising activity assay were used to detect antibodies to SARS-CoV-2 in routine primary care and paediatric samples collected during the first wave of the pandemic in NHS Lothian, Scotland as part of ongoing surveillance efforts. For each assay, sensitivity and specificity was calculated relative to consensus results and neutralising activity. Quantitative correlation was performed between serological and neutralising titres. ResultsSeroprevalence ranged from 3.4-7.3 % in primary care patients and 3-5.9 % in paediatric patients according to different immunoassays. Neutralising activity was detectable in 2.8 % and 1.3 % respectively. Relative assay performance changed depending on comparison to immunoassay consensus versus neutralising activity and qualititative versus quantitative agreement. Cross-reactivity with endemic seasonal coronaviruses was confirmed by neutralising assay in false positives for one immunoassay. Presence of false positives for another assay was found specifically in paediatric but not adult samples. ConclusionsFive serological assays show variable accuracy when applied to the general population, impacting seroprevalence estimates. Assay performance may also vary in detection of protective neutralising antibody levels. These aspects should be considered in assay selection and interpretation in epidemiological studies.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-435863

ABSTRACT

Monoclonal antibodies targeting a variety of epitopes have been isolated from individuals previously infected with SARS-CoV-2, but the relative contributions of these different antibody classes to the polyclonal response remains unclear. Here we use a yeast-display system to map all mutations to the viral spike receptor-binding domain (RBD) that escape binding by representatives of three potently neutralizing classes of anti-RBD antibodies with high-resolution structures. We compare the antibody-escape maps to similar maps for convalescent polyclonal plasma, including plasma from individuals from whom some of the antibodies were isolated. The plasma-escape maps most closely resemble those of a single class of antibodies that target an epitope on the RBD that includes site E484. Therefore, although the human immune system can produce antibodies that target diverse RBD epitopes, in practice the polyclonal response to infection is dominated by a single class of antibodies targeting an epitope that is already undergoing rapid evolution.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-434227

ABSTRACT

Antibodies elicited in response to infection undergo somatic mutation in germinal centers that can result in higher affinity for the cognate antigen. To determine the effects of somatic mutation on the properties of SARS-CoV-2 spike receptor-binding domain (RBD)-specific antibodies, we analyzed six independent antibody lineages. As well as increased neutralization potency, antibody evolution changed pathways for acquisition of resistance and, in some cases, restricted the range of neutralization escape options. For some antibodies, maturation apparently imposed a requirement for multiple spike mutations to enable escape. For certain antibody lineages, maturation enabled neutralization of circulating SARS-CoV-2 variants of concern and heterologous sarbecoviruses. Antibody-antigen structures revealed that these properties resulted from substitutions that allowed additional variability at the interface with the RBD. These findings suggest that increasing antibody diversity through prolonged or repeated antigen exposure may improve protection against diversifying SARS-CoV-2 populations, and perhaps against other pandemic threat coronaviruses.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-20209650

ABSTRACT

Cross-reactive immune responses elicited by seasonal coronaviruses might impact SARS-CoV-2 susceptibility and disease outcomes. We measured neutralizing activity against SARS-CoV-2 in pre-pandemic sera from patients with prior PCR-confirmed seasonal coronavirus infection. While neutralizing activity against seasonal coronaviruses was detected in nearly all sera, cross-reactive neutralizing activity against SARS-CoV-2 was undetectable.

7.
Preprint in English | bioRxiv | ID: ppbiorxiv-214759

ABSTRACT

Neutralizing antibodies elicited by prior infection or vaccination are likely to be key for future protection of individuals and populations against SARS-CoV-2. Moreover, passively administered antibodies are among the most promising therapeutic and prophylactic anti-SARS-CoV-2 agents. However, the degree to which SARS-CoV-2 will adapt to evade neutralizing antibodies is unclear. Using a recombinant chimeric VSV/SARS-CoV-2 reporter virus, we show that functional SARS-CoV-2 S protein variants with mutations in the receptor binding domain (RBD) and N-terminal domain that confer resistance to monoclonal antibodies or convalescent plasma can be readily selected. Notably, SARS-CoV-2 S variants that resist commonly elicited neutralizing antibodies are now present at low frequencies in circulating SARS-CoV-2 populations. Finally, the emergence of antibody-resistant SARS-CoV-2 variants that might limit the therapeutic usefulness of monoclonal antibodies can be mitigated by the use of antibody combinations that target distinct neutralizing epitopes.

SELECTION OF CITATIONS
SEARCH DETAIL