Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Polymers (Basel) ; 16(18)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39339033

ABSTRACT

The present work details the development of carbon fiber-reinforced epoxy membranes with excellent rejection of small-molecule dyes. It is a proof-of-concept for a more sustainable membrane design incorporating carbon fibers, and their recycling and reuse. 4,4'-methylenebis(cyclohexylamine) (MBCHA) polymerized with either bisphenol-A-diglycidyl ether (BADGE) or tetraphenolethane tetraglycidylether (EPON Resin 1031) in polyethylene glycol (PEG) were used to make monolithic membranes reinforced by nonwoven carbon fibers. Membrane pore sizes were tuned by adjusting the molecular weight of the PEG used in the initial polymerization. Membranes made of BADGE-MBCHA showed rejection of Rose Bengal approaching 100%, while tuning the pore sizes substantially increased the rejection of Methylene Blue from ~65% to nearly 100%. The membrane with the best permselectivity was made of EPON-MBCHA polymerized in PEG 300. It has an average DI flux of 4.48 LMH/bar and an average rejection of 99.6% and 99.8% for Rose Bengal and Methylene Blue dyes, respectively. Degradation in 1.1 M sodium hypochlorite enabled the retrieval of the carbon fiber from the epoxy matrix, suggesting that the monolithic membranes could be recycled to retrieve high-value products rather than downcycled for incineration or used as a lower selectivity membrane. The mechanism for epoxy degradation is hypothesized to be part chemical and part physical due to intense swelling stress leading to erosion that leaves behind undamaged carbon fibers. The retrieved fibers were successfully used to make another membrane exhibiting similar performance to those made with pristine fibers.

SELECTION OF CITATIONS
SEARCH DETAIL